Cargando…
Ultra-fast deep learning algorithms on FPGA for the phase-II level-0 trigger of the ATLAS experiment
The LHC accelerator will face, during the following years, a complete upgrade with the main purpose of rising up the instantaneous luminosity by a factor of almost five. Though this will permit to collect an incredible amount of data, the complexity of each event will greatly intensifies going from...
Autor principal: | Sabetta, L |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1393/ncc/i2020-20061-0 http://cds.cern.ch/record/2765546 |
Ejemplares similares
-
Fast Deep Learning on FPGAs for the Phase-II L0 Muon Barrel Trigger of the ATLAS Experiment
por: Sabetta, Luigi
Publicado: (2019) -
FPGA-based algorithms for the new trigger system for the phase 2 Upgrade of the CMS Drift Tubes detector
por: Cela Ruiz, Jose Manuel
Publicado: (2016) -
Upgrade of the ATLAS Level‐1 trigger with an FPGA based Topological Processor
por: Caputo, R, et al.
Publicado: (2013) -
Upgrade of the ATLAS Level-1 trigger with an FPGA based Topological Processor
por: Caputo, R, et al.
Publicado: (2013) -
Fast and resource-efficient Deep Neural Network on FPGA for the Phase-II Level-0 muon barrel trigger of the ATLAS experiment
por: Giagu, Stefano
Publicado: (2020)