Cargando…

Application of Quantum Machine Learning to High Energy Physics Analysis at LHC using IBM Quantum Computer Simulators and IBM Quantum Computer Hardware

The ambitious HL-LHC program will require enormous computing resources in the next two decades. A burning question is whether quantum computer can solve the ever growing demand of computing resources in High Energy Physics in general and physics at LHC in particular.Using IBM Quantum Computer Simula...

Descripción completa

Detalles Bibliográficos
Autores principales: Chan, Jay, Guan, Wen, Sun, Shaojun, Wang, Alex, Wu, Sau Lan, Zhou, Chen, Livny, Miron, Carminati, Federico, Di Meglio, Alberto 
Lenguaje:eng
Publicado: SISSA 2020
Materias:
Acceso en línea:https://dx.doi.org/10.22323/1.364.0116
http://cds.cern.ch/record/2771012
_version_ 1780971397334433792
author Chan, Jay
Guan, Wen
Sun, Shaojun
Wang, Alex
Wu, Sau Lan
Zhou, Chen
Livny, Miron
Carminati, Federico
Di Meglio, Alberto 
author_facet Chan, Jay
Guan, Wen
Sun, Shaojun
Wang, Alex
Wu, Sau Lan
Zhou, Chen
Livny, Miron
Carminati, Federico
Di Meglio, Alberto 
author_sort Chan, Jay
collection CERN
description The ambitious HL-LHC program will require enormous computing resources in the next two decades. A burning question is whether quantum computer can solve the ever growing demand of computing resources in High Energy Physics in general and physics at LHC in particular.Using IBM Quantum Computer Simulators and Quantum Computer Hardware, we have successfully employed the Quantum Support Vector Machine Method (QSVM) in applying quantum machine learning for a ttH (H to two photons), Higgs coupling to top quarks analysis at LHC.
id oai-inspirehep.net-1830785
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2020
publisher SISSA
record_format invenio
spelling oai-inspirehep.net-18307852021-06-10T18:33:09Zdoi:10.22323/1.364.0116http://cds.cern.ch/record/2771012engChan, JayGuan, WenSun, ShaojunWang, AlexWu, Sau LanZhou, ChenLivny, MironCarminati, FedericoDi Meglio, Alberto Application of Quantum Machine Learning to High Energy Physics Analysis at LHC using IBM Quantum Computer Simulators and IBM Quantum Computer HardwareDetectors and Experimental TechniquesParticle Physics - ExperimentComputing and ComputersThe ambitious HL-LHC program will require enormous computing resources in the next two decades. A burning question is whether quantum computer can solve the ever growing demand of computing resources in High Energy Physics in general and physics at LHC in particular.Using IBM Quantum Computer Simulators and Quantum Computer Hardware, we have successfully employed the Quantum Support Vector Machine Method (QSVM) in applying quantum machine learning for a ttH (H to two photons), Higgs coupling to top quarks analysis at LHC.SISSAoai:inspirehep.net:18307852020
spellingShingle Detectors and Experimental Techniques
Particle Physics - Experiment
Computing and Computers
Chan, Jay
Guan, Wen
Sun, Shaojun
Wang, Alex
Wu, Sau Lan
Zhou, Chen
Livny, Miron
Carminati, Federico
Di Meglio, Alberto 
Application of Quantum Machine Learning to High Energy Physics Analysis at LHC using IBM Quantum Computer Simulators and IBM Quantum Computer Hardware
title Application of Quantum Machine Learning to High Energy Physics Analysis at LHC using IBM Quantum Computer Simulators and IBM Quantum Computer Hardware
title_full Application of Quantum Machine Learning to High Energy Physics Analysis at LHC using IBM Quantum Computer Simulators and IBM Quantum Computer Hardware
title_fullStr Application of Quantum Machine Learning to High Energy Physics Analysis at LHC using IBM Quantum Computer Simulators and IBM Quantum Computer Hardware
title_full_unstemmed Application of Quantum Machine Learning to High Energy Physics Analysis at LHC using IBM Quantum Computer Simulators and IBM Quantum Computer Hardware
title_short Application of Quantum Machine Learning to High Energy Physics Analysis at LHC using IBM Quantum Computer Simulators and IBM Quantum Computer Hardware
title_sort application of quantum machine learning to high energy physics analysis at lhc using ibm quantum computer simulators and ibm quantum computer hardware
topic Detectors and Experimental Techniques
Particle Physics - Experiment
Computing and Computers
url https://dx.doi.org/10.22323/1.364.0116
http://cds.cern.ch/record/2771012
work_keys_str_mv AT chanjay applicationofquantummachinelearningtohighenergyphysicsanalysisatlhcusingibmquantumcomputersimulatorsandibmquantumcomputerhardware
AT guanwen applicationofquantummachinelearningtohighenergyphysicsanalysisatlhcusingibmquantumcomputersimulatorsandibmquantumcomputerhardware
AT sunshaojun applicationofquantummachinelearningtohighenergyphysicsanalysisatlhcusingibmquantumcomputersimulatorsandibmquantumcomputerhardware
AT wangalex applicationofquantummachinelearningtohighenergyphysicsanalysisatlhcusingibmquantumcomputersimulatorsandibmquantumcomputerhardware
AT wusaulan applicationofquantummachinelearningtohighenergyphysicsanalysisatlhcusingibmquantumcomputersimulatorsandibmquantumcomputerhardware
AT zhouchen applicationofquantummachinelearningtohighenergyphysicsanalysisatlhcusingibmquantumcomputersimulatorsandibmquantumcomputerhardware
AT livnymiron applicationofquantummachinelearningtohighenergyphysicsanalysisatlhcusingibmquantumcomputersimulatorsandibmquantumcomputerhardware
AT carminatifederico applicationofquantummachinelearningtohighenergyphysicsanalysisatlhcusingibmquantumcomputersimulatorsandibmquantumcomputerhardware
AT dimeglioalberto applicationofquantummachinelearningtohighenergyphysicsanalysisatlhcusingibmquantumcomputersimulatorsandibmquantumcomputerhardware