Cargando…

Advances in modelling gold nanoparticle radiosensitization using new Geant4-DNA physics models

Gold nanoparticles have demonstrated significant radiosensitization of cancer treatment with x-ray radiotherapy. To understand the mechanisms at the basis of nanoparticle radiosensitization, Monte Carlo simulations are used to investigate the dose enhancement, given a certain nanoparticle concentrat...

Descripción completa

Detalles Bibliográficos
Autores principales: Engels, Elette, Bakr, Samer, Bolst, David, Sakata, Dousatsu, Li, Nan, Lazarakis, Peter, McMahon, Stephen J, Ivanchenko, Vladimir, Rosenfeld, Anatoly B, Incerti, Sébastien, Kyriakou, Ioanna, Emfietzoglou, Dimitris, Lerch, Michael L F, Tehei, Moeava, Corde, Stéphanie, Guatelli, Susanna
Lenguaje:eng
Publicado: 2020
Materias:
Acceso en línea:https://dx.doi.org/10.1088/1361-6560/abb7c2
http://cds.cern.ch/record/2745527
_version_ 1780968813251002368
author Engels, Elette
Bakr, Samer
Bolst, David
Sakata, Dousatsu
Li, Nan
Lazarakis, Peter
McMahon, Stephen J
Ivanchenko, Vladimir
Rosenfeld, Anatoly B
Incerti, Sébastien
Kyriakou, Ioanna
Emfietzoglou, Dimitris
Lerch, Michael L F
Tehei, Moeava
Corde, Stéphanie
Guatelli, Susanna
author_facet Engels, Elette
Bakr, Samer
Bolst, David
Sakata, Dousatsu
Li, Nan
Lazarakis, Peter
McMahon, Stephen J
Ivanchenko, Vladimir
Rosenfeld, Anatoly B
Incerti, Sébastien
Kyriakou, Ioanna
Emfietzoglou, Dimitris
Lerch, Michael L F
Tehei, Moeava
Corde, Stéphanie
Guatelli, Susanna
author_sort Engels, Elette
collection CERN
description Gold nanoparticles have demonstrated significant radiosensitization of cancer treatment with x-ray radiotherapy. To understand the mechanisms at the basis of nanoparticle radiosensitization, Monte Carlo simulations are used to investigate the dose enhancement, given a certain nanoparticle concentration and distribution in the biological medium. Earlier studies have ordinarily used condensed history physics models to predict nanoscale dose enhancement with nanoparticles. This study uses Geant4-DNA complemented with novel track structure physics models to accurately describe electron interactions in gold and to calculate the dose surrounding gold nanoparticle structures at nanoscale level. The computed dose in silico due to a clinical kilovoltage beam and the presence of gold nanoparticles was related to in vitro brain cancer cell survival using the local effect model. The comparison of the simulation results with radiobiological experimental measurements shows that Geant4-DNA and local effect model can be used to predict cell survival in silico in the case of x-ray kilovoltage beams.
id oai-inspirehep.net-1830952
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2020
record_format invenio
spelling oai-inspirehep.net-18309522022-08-10T12:16:37Zdoi:10.1088/1361-6560/abb7c2http://cds.cern.ch/record/2745527engEngels, EletteBakr, SamerBolst, DavidSakata, DousatsuLi, NanLazarakis, PeterMcMahon, Stephen JIvanchenko, VladimirRosenfeld, Anatoly BIncerti, SébastienKyriakou, IoannaEmfietzoglou, DimitrisLerch, Michael L FTehei, MoeavaCorde, StéphanieGuatelli, SusannaAdvances in modelling gold nanoparticle radiosensitization using new Geant4-DNA physics modelsOtherGold nanoparticles have demonstrated significant radiosensitization of cancer treatment with x-ray radiotherapy. To understand the mechanisms at the basis of nanoparticle radiosensitization, Monte Carlo simulations are used to investigate the dose enhancement, given a certain nanoparticle concentration and distribution in the biological medium. Earlier studies have ordinarily used condensed history physics models to predict nanoscale dose enhancement with nanoparticles. This study uses Geant4-DNA complemented with novel track structure physics models to accurately describe electron interactions in gold and to calculate the dose surrounding gold nanoparticle structures at nanoscale level. The computed dose in silico due to a clinical kilovoltage beam and the presence of gold nanoparticles was related to in vitro brain cancer cell survival using the local effect model. The comparison of the simulation results with radiobiological experimental measurements shows that Geant4-DNA and local effect model can be used to predict cell survival in silico in the case of x-ray kilovoltage beams.oai:inspirehep.net:18309522020
spellingShingle Other
Engels, Elette
Bakr, Samer
Bolst, David
Sakata, Dousatsu
Li, Nan
Lazarakis, Peter
McMahon, Stephen J
Ivanchenko, Vladimir
Rosenfeld, Anatoly B
Incerti, Sébastien
Kyriakou, Ioanna
Emfietzoglou, Dimitris
Lerch, Michael L F
Tehei, Moeava
Corde, Stéphanie
Guatelli, Susanna
Advances in modelling gold nanoparticle radiosensitization using new Geant4-DNA physics models
title Advances in modelling gold nanoparticle radiosensitization using new Geant4-DNA physics models
title_full Advances in modelling gold nanoparticle radiosensitization using new Geant4-DNA physics models
title_fullStr Advances in modelling gold nanoparticle radiosensitization using new Geant4-DNA physics models
title_full_unstemmed Advances in modelling gold nanoparticle radiosensitization using new Geant4-DNA physics models
title_short Advances in modelling gold nanoparticle radiosensitization using new Geant4-DNA physics models
title_sort advances in modelling gold nanoparticle radiosensitization using new geant4-dna physics models
topic Other
url https://dx.doi.org/10.1088/1361-6560/abb7c2
http://cds.cern.ch/record/2745527
work_keys_str_mv AT engelselette advancesinmodellinggoldnanoparticleradiosensitizationusingnewgeant4dnaphysicsmodels
AT bakrsamer advancesinmodellinggoldnanoparticleradiosensitizationusingnewgeant4dnaphysicsmodels
AT bolstdavid advancesinmodellinggoldnanoparticleradiosensitizationusingnewgeant4dnaphysicsmodels
AT sakatadousatsu advancesinmodellinggoldnanoparticleradiosensitizationusingnewgeant4dnaphysicsmodels
AT linan advancesinmodellinggoldnanoparticleradiosensitizationusingnewgeant4dnaphysicsmodels
AT lazarakispeter advancesinmodellinggoldnanoparticleradiosensitizationusingnewgeant4dnaphysicsmodels
AT mcmahonstephenj advancesinmodellinggoldnanoparticleradiosensitizationusingnewgeant4dnaphysicsmodels
AT ivanchenkovladimir advancesinmodellinggoldnanoparticleradiosensitizationusingnewgeant4dnaphysicsmodels
AT rosenfeldanatolyb advancesinmodellinggoldnanoparticleradiosensitizationusingnewgeant4dnaphysicsmodels
AT incertisebastien advancesinmodellinggoldnanoparticleradiosensitizationusingnewgeant4dnaphysicsmodels
AT kyriakouioanna advancesinmodellinggoldnanoparticleradiosensitizationusingnewgeant4dnaphysicsmodels
AT emfietzogloudimitris advancesinmodellinggoldnanoparticleradiosensitizationusingnewgeant4dnaphysicsmodels
AT lerchmichaellf advancesinmodellinggoldnanoparticleradiosensitizationusingnewgeant4dnaphysicsmodels
AT teheimoeava advancesinmodellinggoldnanoparticleradiosensitizationusingnewgeant4dnaphysicsmodels
AT cordestephanie advancesinmodellinggoldnanoparticleradiosensitizationusingnewgeant4dnaphysicsmodels
AT guatellisusanna advancesinmodellinggoldnanoparticleradiosensitizationusingnewgeant4dnaphysicsmodels