Cargando…
GPU-based Clustering Algorithm for the CMS High Granularity Calorimeter
The future High Luminosity LHC (HL-LHC) is expected to deliver about 5 times higher instantaneous luminosity than the present LHC, resulting in pile-up up to 200 interactions per bunch crossing (PU200). As part of the phase-II upgrade program, the CMS collaboration is developing a new endcap calorim...
Autores principales: | Chen, Ziheng, Di Pilato, Antonio, Pantaleo, Felice, Rovere, Marco |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjconf/202024505005 http://cds.cern.ch/record/2757345 |
Ejemplares similares
-
CLUE: A Fast Parallel Clustering Algorithm for High Granularity Calorimeters in High-Energy Physics
por: Rovere, Marco, et al.
Publicado: (2020) -
CLUE: A Fast Parallel Clustering Algorithm for High Granularity Calorimeters in High-Energy Physics
por: Rovere, Marco, et al.
Publicado: (2020) -
ITS Cluster Finding Algorithm on GPU
por: Changaival, Boonyarit
Publicado: (2014) -
Heterogeneous techniques for rescaling energy deposits in the CMS Phase-2 endcap calorimeter
por: Alves, Bruno, et al.
Publicado: (2021) -
Reconstruction in an imaging calorimeter for HL-LHC
por: Di Pilato, Antonio, et al.
Publicado: (2020)