Cargando…
A deep neural network method for analyzing the CMS High Granularity Calorimeter (HGCAL) events
For the High Luminosity LHC, the CMS collaboration made the ambitious choice of a high granularity design to replace the existing endcap calorimeters. Thousands of particles coming from the multiple interactions create showers in the calorimeters, depositing energy simultaneously in adjacent cells....
Autores principales: | Grasseau, Gilles, Kumar, Abhinav, Sartirana, Andrea, Lobanov, Artur, Beaudette, Florian |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjconf/202024502003 http://cds.cern.ch/record/2756299 |
Ejemplares similares
-
A deep neural network method for analyzing the CMS HGCal events
por: Grasseau, Gilles Jean
Publicado: (2020) -
CMS detector modules for the "HGCAL" project (High Granularity Calorimeter).
por: Brice, Maximilien
Publicado: (2018) -
CMS sub-detector - High-Granularity Endcap Calorimeter (HGCAL)
por: Vanden Broeck, Renilde
Publicado: (2019) -
Poster on CMS High-Granularity Endcap Calorimeter (HGCAL) / CMS calorimètre bouchon à Haute Granularité HGCAL)
por: Barney, David, et al.
Publicado: (2008) -
HGCAL A High-Granularity Calorimeter for the Endcaps of CMS at HL-LHC
por: Magnan, Anne-marie
Publicado: (2016)