Cargando…
Distributed data analysis with ROOT RDataFrame
Widespread distributed processing of big datasets has been around for more than a decade now thanks to Hadoop, but only recently higher-level abstractions have been proposed for programmers to easily operate on those datasets, e.g. Spark. ROOT has joined that trend with its RDataFrame tool for decla...
Autores principales: | Padulano, Vincenzo Eduardo, Villanueva, Javier Cervantes, Guiraud, Enrico, Tejedor Saavedra, Enric |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjconf/202024503009 http://cds.cern.ch/record/2753977 |
Ejemplares similares
-
Fine-grained data caching approaches to speedup a distributed RDataFrame analysis
por: Padulano, Vincenzo Eduardo, et al.
Publicado: (2021) -
Leveraging HPC resources with distributed RDataFrame
por: Padulano, V E, et al.
Publicado: (2023) -
RDataFrame enhancements for HEP analyses
por: Guiraud, E, et al.
Publicado: (2023) -
RDataFrame: Easy parallel ROOT analysis at 100 threads
por: Piparo, Danilo, et al.
Publicado: (2019) -
Parallelization and optimization of a High Energy Physics analysis with ROOT’s RDataFrame and Spark
por: Cervantes Villanueva, Javier
Publicado: (2018)