Cargando…
New Physics Agnostic Selections For New Physics Searches
We discuss a model-independent strategy for boosting new physics searches with the help of an unsupervised anomaly detection algorithm. Prior to a search, each input event is preprocessed by the algorithm - a variational autoencoder (VAE). Based on the loss assigned to each event, input data can be...
Autores principales: | Woźniak, Kinga Anna, Cerri, Olmo, Duarte, Javier M, Möller, Torsten, Ngadiuba, Jennifer, Nguyen, Thong Q, Pierini, Maurizio, Spiropulu, Maria, Vlimant, Jean-Roch |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjconf/202024506039 http://cds.cern.ch/record/2752192 |
Ejemplares similares
-
Variational Autoencoders for New Physics Mining at the Large Hadron Collider
por: Cerri, Olmo, et al.
Publicado: (2018) -
Interaction Network for Jet Characterization at the LHC
por: Pierini, M, et al.
Publicado: (2019) -
Source-Agnostic Gravitational-Wave Detection with Recurrent Autoencoders
por: Moreno, Eric A., et al.
Publicado: (2021) -
Topology classification with deep learning to improve real-time event selection at the LHC
por: Nguyen, Thong Q., et al.
Publicado: (2018) -
Data Augmentation at the LHC through Analysis-specific Fast Simulation with Deep Learning
por: Chen, Cheng, et al.
Publicado: (2020)