Cargando…
Modeling charged-particle multiplicity distributions at LHC
With many applications in high-energy physics, Deep Learning or Deep Neural Network (DNN) has become noticeable and practical in recent years. In this article, a new technique is presented for modeling the charged particles multiplicity distribution Pn of Proton-Proton (PP) collisions using an effic...
Autor principal: | Radi, Amr |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1142/S0217732320503022 http://cds.cern.ch/record/2750003 |
Ejemplares similares
-
Constraints on the charged-multiplicity distribution from neutral- charged-particle correlations
por: Gupta, V
Publicado: (1974) -
Some Compelling Overview of Charged Particle Multplicity Distribution in pp Collisions at the LHC
por: Aggarwal, Ritu, et al.
Publicado: (2020) -
Long-lived Charged Particles in Ultraperipheral Collisions at the LHC
por: Zhemchugov, E V
Publicado: (2020) -
Central rapidity densities of charged particles at RHIC and LHC
por: Armesto-Pérez, Nestor, et al.
Publicado: (2000) -
Charged-particle multiplicity distributions and rescattering effects in pd interactions at 19 GeV/c
por: Bakken, V, et al.
Publicado: (1979)