Cargando…

A Beam Profile Monitor for High Energy Proton Beams Using Microfabrication Techniques

In High Energy Physics experiments it is a common practice to expose electronic components and systems to particle beams, in order to assess their level of radiation tolerance when operating in a radiation environment. One of the facilities used for such tests is the Proton Irradiation Facility (IRR...

Descripción completa

Detalles Bibliográficos
Autores principales: Mateu, Isidre, Bouvet, Didier, Farabolini, Wilfrid, Gilardi, Antonio, Gkotse, Blerina, Mapelli, Alessandro, Meskova, Viktoria, Pezzullo, Giuseppe, Ravotti, Federico, Sallese, Jean-Michel, Sidiropoulou, Ourania
Lenguaje:eng
Publicado: 2020
Materias:
Acceso en línea:https://dx.doi.org/10.18429/JACoW-IBIC2020-TUPP37
http://cds.cern.ch/record/2772583
_version_ 1780971505563205632
author Mateu, Isidre
Bouvet, Didier
Farabolini, Wilfrid
Gilardi, Antonio
Gkotse, Blerina
Mapelli, Alessandro
Meskova, Viktoria
Pezzullo, Giuseppe
Ravotti, Federico
Sallese, Jean-Michel
Sidiropoulou, Ourania
author_facet Mateu, Isidre
Bouvet, Didier
Farabolini, Wilfrid
Gilardi, Antonio
Gkotse, Blerina
Mapelli, Alessandro
Meskova, Viktoria
Pezzullo, Giuseppe
Ravotti, Federico
Sallese, Jean-Michel
Sidiropoulou, Ourania
author_sort Mateu, Isidre
collection CERN
description In High Energy Physics experiments it is a common practice to expose electronic components and systems to particle beams, in order to assess their level of radiation tolerance when operating in a radiation environment. One of the facilities used for such tests is the Proton Irradiation Facility (IRRAD) at CERN. In order to properly control the 24 GeV/c proton beam, Beam Profile Monitor (BPM) devices are used. The current BPMs are fabricated as standard flexible PCBs featuring a matrix of metallic sensing pads. When exposed to the beam, secondary electrons are emitted from each pad, thus generating a charge proportional to the particle flux. The charge is measured individually for each pad using a dedicated readout system, and so the beam shape, position and intensity are obtained. The beam profile determination with this technique requires thus the usage of non-invasive and radiation tolerant sensing elements. This study proposes a new fabrication method using microfabrication techniques in order to improve the BPMs performance while greatly reducing the device thickness, thus making them also appropriate for the monitoring of lower energy and intensity particle beams.
id oai-inspirehep.net-1840674
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2020
record_format invenio
spelling oai-inspirehep.net-18406742022-08-09T15:20:48Zdoi:10.18429/JACoW-IBIC2020-TUPP37http://cds.cern.ch/record/2772583engMateu, IsidreBouvet, DidierFarabolini, WilfridGilardi, AntonioGkotse, BlerinaMapelli, AlessandroMeskova, ViktoriaPezzullo, GiuseppeRavotti, FedericoSallese, Jean-MichelSidiropoulou, OuraniaA Beam Profile Monitor for High Energy Proton Beams Using Microfabrication TechniquesAccelerators and Storage RingsIn High Energy Physics experiments it is a common practice to expose electronic components and systems to particle beams, in order to assess their level of radiation tolerance when operating in a radiation environment. One of the facilities used for such tests is the Proton Irradiation Facility (IRRAD) at CERN. In order to properly control the 24 GeV/c proton beam, Beam Profile Monitor (BPM) devices are used. The current BPMs are fabricated as standard flexible PCBs featuring a matrix of metallic sensing pads. When exposed to the beam, secondary electrons are emitted from each pad, thus generating a charge proportional to the particle flux. The charge is measured individually for each pad using a dedicated readout system, and so the beam shape, position and intensity are obtained. The beam profile determination with this technique requires thus the usage of non-invasive and radiation tolerant sensing elements. This study proposes a new fabrication method using microfabrication techniques in order to improve the BPMs performance while greatly reducing the device thickness, thus making them also appropriate for the monitoring of lower energy and intensity particle beams.oai:inspirehep.net:18406742020
spellingShingle Accelerators and Storage Rings
Mateu, Isidre
Bouvet, Didier
Farabolini, Wilfrid
Gilardi, Antonio
Gkotse, Blerina
Mapelli, Alessandro
Meskova, Viktoria
Pezzullo, Giuseppe
Ravotti, Federico
Sallese, Jean-Michel
Sidiropoulou, Ourania
A Beam Profile Monitor for High Energy Proton Beams Using Microfabrication Techniques
title A Beam Profile Monitor for High Energy Proton Beams Using Microfabrication Techniques
title_full A Beam Profile Monitor for High Energy Proton Beams Using Microfabrication Techniques
title_fullStr A Beam Profile Monitor for High Energy Proton Beams Using Microfabrication Techniques
title_full_unstemmed A Beam Profile Monitor for High Energy Proton Beams Using Microfabrication Techniques
title_short A Beam Profile Monitor for High Energy Proton Beams Using Microfabrication Techniques
title_sort beam profile monitor for high energy proton beams using microfabrication techniques
topic Accelerators and Storage Rings
url https://dx.doi.org/10.18429/JACoW-IBIC2020-TUPP37
http://cds.cern.ch/record/2772583
work_keys_str_mv AT mateuisidre abeamprofilemonitorforhighenergyprotonbeamsusingmicrofabricationtechniques
AT bouvetdidier abeamprofilemonitorforhighenergyprotonbeamsusingmicrofabricationtechniques
AT faraboliniwilfrid abeamprofilemonitorforhighenergyprotonbeamsusingmicrofabricationtechniques
AT gilardiantonio abeamprofilemonitorforhighenergyprotonbeamsusingmicrofabricationtechniques
AT gkotseblerina abeamprofilemonitorforhighenergyprotonbeamsusingmicrofabricationtechniques
AT mapellialessandro abeamprofilemonitorforhighenergyprotonbeamsusingmicrofabricationtechniques
AT meskovaviktoria abeamprofilemonitorforhighenergyprotonbeamsusingmicrofabricationtechniques
AT pezzullogiuseppe abeamprofilemonitorforhighenergyprotonbeamsusingmicrofabricationtechniques
AT ravottifederico abeamprofilemonitorforhighenergyprotonbeamsusingmicrofabricationtechniques
AT sallesejeanmichel abeamprofilemonitorforhighenergyprotonbeamsusingmicrofabricationtechniques
AT sidiropoulouourania abeamprofilemonitorforhighenergyprotonbeamsusingmicrofabricationtechniques
AT mateuisidre beamprofilemonitorforhighenergyprotonbeamsusingmicrofabricationtechniques
AT bouvetdidier beamprofilemonitorforhighenergyprotonbeamsusingmicrofabricationtechniques
AT faraboliniwilfrid beamprofilemonitorforhighenergyprotonbeamsusingmicrofabricationtechniques
AT gilardiantonio beamprofilemonitorforhighenergyprotonbeamsusingmicrofabricationtechniques
AT gkotseblerina beamprofilemonitorforhighenergyprotonbeamsusingmicrofabricationtechniques
AT mapellialessandro beamprofilemonitorforhighenergyprotonbeamsusingmicrofabricationtechniques
AT meskovaviktoria beamprofilemonitorforhighenergyprotonbeamsusingmicrofabricationtechniques
AT pezzullogiuseppe beamprofilemonitorforhighenergyprotonbeamsusingmicrofabricationtechniques
AT ravottifederico beamprofilemonitorforhighenergyprotonbeamsusingmicrofabricationtechniques
AT sallesejeanmichel beamprofilemonitorforhighenergyprotonbeamsusingmicrofabricationtechniques
AT sidiropoulouourania beamprofilemonitorforhighenergyprotonbeamsusingmicrofabricationtechniques