Cargando…
Supervised learning-based reconstruction of magnet errors in circular accelerators
Magnetic field errors and misalignments cause optics perturbations, which can lead to machine safety issues and performance degradation. The correlation between magnetic errors and deviations of the measured optics functions from design can be used in order to build supervised learning models able t...
Autores principales: | Fol, E, Tomás, R, Franchetti, G |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1140/epjp/s13360-021-01348-5 http://cds.cern.ch/record/2764908 |
Ejemplares similares
-
Reconstruction of Linear Optics Observables Using Supervised Learning
por: Fol, Elena, et al.
Publicado: (2021) -
Machine Learning Techniques for Optics Measurements and Corrections
por: Fol, Elena, et al.
Publicado: (2021) -
Detection of faulty beam position monitors using unsupervised learning
por: Fol, E, et al.
Publicado: (2020) -
Application of Machine Learning to Beam Diagnostics
por: Fol, Elena, et al.
Publicado: (2019) -
Optics corrections using machine learning in the LHC
por: Fol, Elena, et al.
Publicado: (2019)