Cargando…
Machine Learning Applied to the Analysis of Nonlinear Beam Dynamics Simulations for the CERN Large Hadron Collider and Its Luminosity Upgrade
A machine learning approach to scientific problems has been in use in science and engineering for decades. High-energy physics provided a natural domain of application of machine learning, profiting from these powerful tools for the advanced analysis of data from particle colliders. However, machine...
Autores principales: | Giovannozzi, Massimo, Maclean, Ewen, Montanari, Carlo Emilio, Valentino, Gianluca, Van der Veken, Frederik F |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.3390/info12020053 http://cds.cern.ch/record/2765666 |
Ejemplares similares
-
Machine learning in accelerator physics: Applications at the CERN Large Hadron Collider
por: Van der Veken, Frederik, et al.
Publicado: (2020) -
Prospects for beam-based study of dodecapole nonlinearities in the CERN High-Luminosity Large Hadron Collider
por: Maclean, Ewen Hamish, et al.
Publicado: (2022) -
Application of machine learning techniques at the CERN Large Hadron Collider
por: Van der Veken, Frederik, et al.
Publicado: (2020) -
Bridging mathematics and physics: models of the evolution of dynamic aperture in hadron colliders and applications to LHC
por: Van der Veken, Frederik, et al.
Publicado: (2020) -
Using Machine Learning to Improve Dynamic Aperture Estimates
por: Van der Veken, Frederik F, et al.
Publicado: (2021)