Cargando…
A Machine Learning Approach for the Tune Estimation in the LHC
The betatron tune in the Large Hadron Collider (LHC) is measured using a Base-Band Tune (BBQ) system. The processing of these BBQ signals is often perturbed by 50 Hz noise harmonics present in the beam. This causes the tune measurement algorithm, currently based on peak detection, to provide incorre...
Autores principales: | Grech, Leander, Valentino, Gianluca, Alves, Diogo |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.3390/info12050197 http://cds.cern.ch/record/2767777 |
Ejemplares similares
-
Application of reinforcement learning in the LHC tune feedback
por: Grech, Leander, et al.
Publicado: (2022) -
An Alternative Processing Algorithm for the Tune Measurement System in the LHC
por: Grech, Leander, et al.
Publicado: (2020) -
Feasibility of Hardware Acceleration in the LHC Orbit Feedback Controller
por: Grech, Leander, et al.
Publicado: (2019) -
Renovation of the Beam-Based Feedback Controller in the LHC
por: Grech, Leander, et al.
Publicado: (2022) -
Machine Learning Applied at the LHC for Beam Loss Pattern Classification
por: Valentino, Gianluca, et al.
Publicado: (2018)