Cargando…
Inference and Learning in a Latent Variable Model for Beta Distributed Interval Data
Latent Variable Models (LVMs) are well established tools to accomplish a range of different data processing tasks. Applications exploit the ability of LVMs to identify latent data structure in order to improve data (e.g., through denoising) or to estimate the relation between latent causes and measu...
Autores principales: | Mousavi, Hamid, Buhl, Mareike, Guiraud, Enrico, Drefs, Jakob, Lücke, Jörg |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.3390/e23050552 http://cds.cern.ch/record/2773405 |
Ejemplares similares
-
Inference and Learning in a Latent Variable Model for Beta Distributed Interval Data
por: Mousavi, Hamid, et al.
Publicado: (2021) -
Evolutionary Variational Optimization of Generative Models
por: Drefs, Jakob, et al.
Publicado: (2022) -
Scalable Unsupervised Learning for Deep Discrete Generative Models
por: Guiraud, Enrico
Publicado: (2021) -
Distributed data analysis with ROOT RDataFrame
por: Padulano, Vincenzo Eduardo, et al.
Publicado: (2020) -
Leveraging HPC resources with distributed RDataFrame
por: Padulano, V E, et al.
Publicado: (2023)