Cargando…
Analysis-Specific Fast Simulation at the LHC with Deep Learning
We present a fast-simulation application based on a deep neural network, designed to create large analysis-specific datasets. Taking as an example the generation of W + jet events produced in $\sqrt{s}=$ 13 TeV proton–proton collisions, we train a neural network to model detector resolution effects...
Autores principales: | Chen, C, Cerri, O, Nguyen, T Q, Vlimant, J R, Pierini, M |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/s41781-021-00060-4 http://cds.cern.ch/record/2773273 |
Ejemplares similares
-
Analysis-Specific Fast Simulation at the LHC with Deep Learning
por: Chen, C., et al.
Publicado: (2021) -
Data Augmentation at the LHC through Analysis-specific Fast Simulation with Deep Learning
por: Chen, Cheng, et al.
Publicado: (2020) -
Generative Adversarial Networks for fast simulation
por: Carminati, Federico, et al.
Publicado: (2020) -
Interaction Network for Jet Characterization at the LHC
por: Pierini, M, et al.
Publicado: (2019) -
Topology classification with deep learning to improve real-time event selection at the LHC
por: Nguyen, Thong Q., et al.
Publicado: (2018)