Cargando…

Neutrino-nucleon cross section measurements in NOMAD

The NOMAD (Neutrino Oscillation MAgnetic Detector) experiment, using the SPS (Super Proton Syncrotron) neutrino beam (1 GeV < E [nu] < 200 GeV) at CERN (European Organization for Nuclear Research), has collected more than 1.7 million neutrino induced charged and neutral current (CC and NC) eve...

Descripción completa

Detalles Bibliográficos
Autor principal: Wu, Qun
Lenguaje:eng
Publicado: 2006
Materias:
Acceso en línea:http://cds.cern.ch/record/2284440
Descripción
Sumario:The NOMAD (Neutrino Oscillation MAgnetic Detector) experiment, using the SPS (Super Proton Syncrotron) neutrino beam (1 GeV < E [nu] < 200 GeV) at CERN (European Organization for Nuclear Research), has collected more than 1.7 million neutrino induced charged and neutral current (CC and NC) events. This data is the largest high resolution neutrino nucleon scattering data to date and is ideal for precision measurements and searches in neutrino-physics. This thesis presents the precise measurement of the inclusive neutrino CC cross section in 2.5 GeV < E [nu] < 150 GeV region. The linear dependence of the inclusive CC cross section ([Special characters omitted.] ) versus the incoming neutrino energy ( E [nu] ) is observed in the high energy region of 30 GeV < E [nu] < 150 GeV. Especially, the measurement in 2.5 GeV < E [nu] < 30 GeV region provides the first precise determination of [Special characters omitted.] . The significant deviation from the linear dependence for [Special characters omitted.] versus neutrino energy ( E [nu] ) is determined in the energy region less than 20 GeV. This thesis also presents an empirical measurement of NC/CC ratio dependence on hadronic energy in 2.5 GeV < E Had < 30 GeV. Likelihood techniques exploiting full event kinematics were developed. It gives the best neutral current and charged current separation in a traditional neutrino-nucleon scattering experiment. This measurement is going to give a better understanding of the neutral current background in current and future neutrino oscillation experiments.