Cargando…
Synergy of Landsat, climate and LiDAR data for aboveground biomass mapping in medium-stature tropical forests of the Yucatan Peninsula, Mexico
Introduction: Tropical forests represent complex and dynamic ecosystems that cover extensive areas, hence the importance of determining biomass content and representing spatial variability.Objective: Estimating and mapping aboveground biomass and its associated uncertainty for medium-stature semi-ev...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo |
Lenguaje: | spa |
Publicado: |
Universidad Autónoma Chapingo
2021
|
Materias: | |
Acceso en línea: | https://revistas.chapingo.mx/forestales/article/view/r.rchscfa.2020.08.050 https://dx.doi.org/10.5154/r.rchscfa.2020.08.050 |
_version_ | 1780770768197517312 |
---|---|
author | Ortiz-Reyes, Alma D. Valdez-Lazalde, José R. Ángeles-Pérez, Gregorio De los Santos-Posadas, Héctor M. Schneider, Laura Aguirre-Salado, Carlos A. Peduzzi, Alicia |
author_facet | Ortiz-Reyes, Alma D. Valdez-Lazalde, José R. Ángeles-Pérez, Gregorio De los Santos-Posadas, Héctor M. Schneider, Laura Aguirre-Salado, Carlos A. Peduzzi, Alicia |
author_sort | Ortiz-Reyes, Alma D. |
collection | Revista Chapingo Serie Ciencias Forestales y del Ambiente |
description | Introduction: Tropical forests represent complex and dynamic ecosystems that cover extensive areas, hence the importance of determining biomass content and representing spatial variability.Objective: Estimating and mapping aboveground biomass and its associated uncertainty for medium-stature semi-evergreen (SMSP) and semi-deciduous (SMSC) tropical forests of the Yucatan Peninsula.Materials and methods: Aboveground biomass was estimated as a function of explanatory variables taken from Landsat images and climatic variables, using the random Forest algorithm. Aboveground biomass was mapped from previous biomass estimates for stripes of the territory with the presence of LiDAR (Light Detection And Ranging) and field data. Uncertainty at the pixel level was estimated as the coefficient of variation.Results and discussion: A combination of climatic and spectral variables showed acceptable capacity to estimate biomass in the medium-stature semi-evergreen and semi-deciduous tropical forest with an explained variance of 50 % and RMSE (root mean squared error) of 34.2 Mg·ha-1 and 26.2 Mg·ha-1, respectively, prevailing climate variables. SMSP biomass ranged from 4.0 to 185.7 Mg·ha-1 and SMSC ranged from 11.7 to 117 Mg·ha-1. The lowest values of uncertainty were recorded for the medium-stature semi-evergreen tropical forest, being higher in areas with lower amounts of aboveground biomass.Conclusion: Aboveground biomass was estimated and mapped by the combined use of auxiliary variables with an acceptable accuracy, against uncertainty of predictions, which represents an opportunity for future improvement. |
format | Online Article |
id | oai_chapingo-forestales-_article-131 |
institution | Universidad Autónoma Chapingo |
language | spa |
publishDate | 2021 |
publisher | Universidad Autónoma Chapingo |
record_format | ojs |
spelling | oai_chapingo-forestales-_article-1312023-08-28T16:31:47Z Synergy of Landsat, climate and LiDAR data for aboveground biomass mapping in medium-stature tropical forests of the Yucatan Peninsula, Mexico Sinergia de datos espectrales Landsat, climáticos y LiDAR para el mapeo de biomasa aérea en selvas medianas de la península de Yucatán, México Ortiz-Reyes, Alma D. Valdez-Lazalde, José R. Ángeles-Pérez, Gregorio De los Santos-Posadas, Héctor M. Schneider, Laura Aguirre-Salado, Carlos A. Peduzzi, Alicia bosque tropical imágenes satelitales índices de vegetación random Forest incertidumbre La biomasa aérea se estimó en selvas medianas subperennifolia y subcaducifolia. La biomasa aérea se estimó mediante la aplicación del algoritmo random Forest. La variación espacial de precipitación y temperatura son relevantes para la estimación y el mapeo. Los valores más bajos de incertidumbre se registraron en la selva mediana subperennifolia. La sinergia de datos diversos y algoritmos automatizados facilitaron el mapeo de la biomasa. tropical forest satellite images vegetation indices random Forest uncertainty Aboveground biomass was estimated for medium-stature semi-evergreen and semi-deciduous tropical forests. Aboveground biomass was estimated by applying the random Forest algorithm. Spatial variation of precipitation and temperature are relevant for estimation and mapping. The lowest uncertainty values were recorded for the semi-evergreen tropical forest. Synergy of diverse data and automated algorithms provided biomass mapping. Introduction: Tropical forests represent complex and dynamic ecosystems that cover extensive areas, hence the importance of determining biomass content and representing spatial variability.Objective: Estimating and mapping aboveground biomass and its associated uncertainty for medium-stature semi-evergreen (SMSP) and semi-deciduous (SMSC) tropical forests of the Yucatan Peninsula.Materials and methods: Aboveground biomass was estimated as a function of explanatory variables taken from Landsat images and climatic variables, using the random Forest algorithm. Aboveground biomass was mapped from previous biomass estimates for stripes of the territory with the presence of LiDAR (Light Detection And Ranging) and field data. Uncertainty at the pixel level was estimated as the coefficient of variation.Results and discussion: A combination of climatic and spectral variables showed acceptable capacity to estimate biomass in the medium-stature semi-evergreen and semi-deciduous tropical forest with an explained variance of 50 % and RMSE (root mean squared error) of 34.2 Mg·ha-1 and 26.2 Mg·ha-1, respectively, prevailing climate variables. SMSP biomass ranged from 4.0 to 185.7 Mg·ha-1 and SMSC ranged from 11.7 to 117 Mg·ha-1. The lowest values of uncertainty were recorded for the medium-stature semi-evergreen tropical forest, being higher in areas with lower amounts of aboveground biomass.Conclusion: Aboveground biomass was estimated and mapped by the combined use of auxiliary variables with an acceptable accuracy, against uncertainty of predictions, which represents an opportunity for future improvement. Introducción: Los bosques tropicales constituyen ecosistemas complejos y dinámicos que cubren áreas extensas, de ahí la importancia de determinar su contenido de biomasa y representar su variabilidad espacial.Objetivo: Estimar y mapear la biomasa aérea y su incertidumbre asociada en selvas medianas subperennifolia (SMSP) y subcaducifolia (SMSC) de la península de Yucatán.Materiales y métodos: La biomasa aérea se estimó en función de variables explicativas obtenidas de imágenes Landsat y variables climáticas, mediante el algoritmo random Forest. La biomasa aérea se mapeó a partir de estimaciones previas de biomasa para franjas del territorio con presencia de datos LiDAR (Light Detection And Ranging) y datos de campo. La incertidumbre a nivel de pixel se estimó como el coeficiente de variación.Resultados y discusión: Una combinación de variables climáticas y espectrales mostraron capacidad aceptable para estimar la biomasa en la selva mediana subperennifolia y mediana subcaducifolia con una varianza explicada de 50 % y RMSE (raíz del error cuadrático medio) de 34.2 Mg·ha-1 y 26.2 Mg·ha-1, respectivamente, prevalenciendo las variables climáticas. La biomasa de la SMSP varió entre 4.0 y 185.7 Mg·ha-1 y la de la SMSC osciló entre 11.7 y 117 Mg·ha-1. Los valores más bajos de incertidumbre se registraron en la selva mediana subperennifolia, siendo mayores en zonas con cantidades menores de biomasa aérea.Conclusión: La biomasa aérea se estimó y mapeó mediante el uso combinado de las variables auxiliares con una precisión aceptable, contrario a la incertidumbre de las predicciones, lo que representa una oportunidad de mejora futura. Universidad Autónoma Chapingo 2021-07-19 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf https://revistas.chapingo.mx/forestales/article/view/r.rchscfa.2020.08.050 10.5154/r.rchscfa.2020.08.050 Revista Chapingo Serie Ciencias Forestales y del Ambiente; Vol. 27 No. 3 (2021): September-December; 383-400 Revista Chapingo Serie Ciencias Forestales y del Ambiente; Vol. 27 Núm. 3 (2021): septiembre-diciembre; 383-400 2007-4018 2007-3828 spa https://revistas.chapingo.mx/forestales/article/view/r.rchscfa.2020.08.050/r.rchscfa.2020.08.050 Derechos de autor 2021 Revista Chapingo Serie Ciencias Forestales y del Ambiente https://creativecommons.org/licenses/by-nc/4.0 |
spellingShingle | bosque tropical imágenes satelitales índices de vegetación random Forest incertidumbre La biomasa aérea se estimó en selvas medianas subperennifolia y subcaducifolia. La biomasa aérea se estimó mediante la aplicación del algoritmo random Forest. La variación espacial de precipitación y temperatura son relevantes para la estimación y el mapeo. Los valores más bajos de incertidumbre se registraron en la selva mediana subperennifolia. La sinergia de datos diversos y algoritmos automatizados facilitaron el mapeo de la biomasa. tropical forest satellite images vegetation indices random Forest uncertainty Aboveground biomass was estimated for medium-stature semi-evergreen and semi-deciduous tropical forests. Aboveground biomass was estimated by applying the random Forest algorithm. Spatial variation of precipitation and temperature are relevant for estimation and mapping. The lowest uncertainty values were recorded for the semi-evergreen tropical forest. Synergy of diverse data and automated algorithms provided biomass mapping. Ortiz-Reyes, Alma D. Valdez-Lazalde, José R. Ángeles-Pérez, Gregorio De los Santos-Posadas, Héctor M. Schneider, Laura Aguirre-Salado, Carlos A. Peduzzi, Alicia Synergy of Landsat, climate and LiDAR data for aboveground biomass mapping in medium-stature tropical forests of the Yucatan Peninsula, Mexico |
title | Synergy of Landsat, climate and LiDAR data for aboveground biomass mapping in medium-stature tropical forests of the Yucatan Peninsula, Mexico |
title_alt | Sinergia de datos espectrales Landsat, climáticos y LiDAR para el mapeo de biomasa aérea en selvas medianas de la península de Yucatán, México |
title_full | Synergy of Landsat, climate and LiDAR data for aboveground biomass mapping in medium-stature tropical forests of the Yucatan Peninsula, Mexico |
title_fullStr | Synergy of Landsat, climate and LiDAR data for aboveground biomass mapping in medium-stature tropical forests of the Yucatan Peninsula, Mexico |
title_full_unstemmed | Synergy of Landsat, climate and LiDAR data for aboveground biomass mapping in medium-stature tropical forests of the Yucatan Peninsula, Mexico |
title_short | Synergy of Landsat, climate and LiDAR data for aboveground biomass mapping in medium-stature tropical forests of the Yucatan Peninsula, Mexico |
title_sort | synergy of landsat, climate and lidar data for aboveground biomass mapping in medium-stature tropical forests of the yucatan peninsula, mexico |
topic | bosque tropical imágenes satelitales índices de vegetación random Forest incertidumbre La biomasa aérea se estimó en selvas medianas subperennifolia y subcaducifolia. La biomasa aérea se estimó mediante la aplicación del algoritmo random Forest. La variación espacial de precipitación y temperatura son relevantes para la estimación y el mapeo. Los valores más bajos de incertidumbre se registraron en la selva mediana subperennifolia. La sinergia de datos diversos y algoritmos automatizados facilitaron el mapeo de la biomasa. tropical forest satellite images vegetation indices random Forest uncertainty Aboveground biomass was estimated for medium-stature semi-evergreen and semi-deciduous tropical forests. Aboveground biomass was estimated by applying the random Forest algorithm. Spatial variation of precipitation and temperature are relevant for estimation and mapping. The lowest uncertainty values were recorded for the semi-evergreen tropical forest. Synergy of diverse data and automated algorithms provided biomass mapping. |
topic_facet | bosque tropical imágenes satelitales índices de vegetación random Forest incertidumbre La biomasa aérea se estimó en selvas medianas subperennifolia y subcaducifolia. La biomasa aérea se estimó mediante la aplicación del algoritmo random Forest. La variación espacial de precipitación y temperatura son relevantes para la estimación y el mapeo. Los valores más bajos de incertidumbre se registraron en la selva mediana subperennifolia. La sinergia de datos diversos y algoritmos automatizados facilitaron el mapeo de la biomasa. tropical forest satellite images vegetation indices random Forest uncertainty Aboveground biomass was estimated for medium-stature semi-evergreen and semi-deciduous tropical forests. Aboveground biomass was estimated by applying the random Forest algorithm. Spatial variation of precipitation and temperature are relevant for estimation and mapping. The lowest uncertainty values were recorded for the semi-evergreen tropical forest. Synergy of diverse data and automated algorithms provided biomass mapping. |
url | https://revistas.chapingo.mx/forestales/article/view/r.rchscfa.2020.08.050 https://dx.doi.org/10.5154/r.rchscfa.2020.08.050 |
work_keys_str_mv | AT ortizreyesalmad synergyoflandsatclimateandlidardataforabovegroundbiomassmappinginmediumstaturetropicalforestsoftheyucatanpeninsulamexico AT valdezlazaldejoser synergyoflandsatclimateandlidardataforabovegroundbiomassmappinginmediumstaturetropicalforestsoftheyucatanpeninsulamexico AT angelesperezgregorio synergyoflandsatclimateandlidardataforabovegroundbiomassmappinginmediumstaturetropicalforestsoftheyucatanpeninsulamexico AT delossantosposadashectorm synergyoflandsatclimateandlidardataforabovegroundbiomassmappinginmediumstaturetropicalforestsoftheyucatanpeninsulamexico AT schneiderlaura synergyoflandsatclimateandlidardataforabovegroundbiomassmappinginmediumstaturetropicalforestsoftheyucatanpeninsulamexico AT aguirresaladocarlosa synergyoflandsatclimateandlidardataforabovegroundbiomassmappinginmediumstaturetropicalforestsoftheyucatanpeninsulamexico AT peduzzialicia synergyoflandsatclimateandlidardataforabovegroundbiomassmappinginmediumstaturetropicalforestsoftheyucatanpeninsulamexico AT ortizreyesalmad sinergiadedatosespectraleslandsatclimaticosylidarparaelmapeodebiomasaaereaenselvasmedianasdelapeninsuladeyucatanmexico AT valdezlazaldejoser sinergiadedatosespectraleslandsatclimaticosylidarparaelmapeodebiomasaaereaenselvasmedianasdelapeninsuladeyucatanmexico AT angelesperezgregorio sinergiadedatosespectraleslandsatclimaticosylidarparaelmapeodebiomasaaereaenselvasmedianasdelapeninsuladeyucatanmexico AT delossantosposadashectorm sinergiadedatosespectraleslandsatclimaticosylidarparaelmapeodebiomasaaereaenselvasmedianasdelapeninsuladeyucatanmexico AT schneiderlaura sinergiadedatosespectraleslandsatclimaticosylidarparaelmapeodebiomasaaereaenselvasmedianasdelapeninsuladeyucatanmexico AT aguirresaladocarlosa sinergiadedatosespectraleslandsatclimaticosylidarparaelmapeodebiomasaaereaenselvasmedianasdelapeninsuladeyucatanmexico AT peduzzialicia sinergiadedatosespectraleslandsatclimaticosylidarparaelmapeodebiomasaaereaenselvasmedianasdelapeninsuladeyucatanmexico |