Cargando…

Emergency department use and Artificial Intelligence in Pelotas: design and baseline results

OBJETIVO: To describe the initial baseline results of a population-based study, as well as a protocol in order to evaluate the performance of different machine learning algorithms with the objective of predicting the demand for urgent and emergency services in a representative sample of adults from...

Descripción completa

Detalles Bibliográficos
Autores principales: Delpino, Felipe Mendes, Figueiredo, Lílian Munhoz, Costa, Ândria Krolow, Carreno, Ioná, da Silva, Luan Nascimento, Flores, Alana Duarte, Pinheiro, Milena Afonso, da Silva, Eloisa Porciúncula, Marques, Gabriela Ávila, Saes, Mirelle de Oliveira, Duro, Suele Manjourany Silva, Facchini, Luiz Augusto, Vissoci, João Ricardo Nickenig, Flores, Thaynã Ramos, Demarco, Flávio Fernando, Blumenberg, Cauane, Chiavegatto, Alexandre Dias Porto, da Silva, Inácio Crochemore, Batista, Sandro Rodrigues, Arcêncio, Ricardo Alexandre, Nunes, Bruno Pereira
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Associação Brasileira de Saúde Coletiva 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10000014/
https://www.ncbi.nlm.nih.gov/pubmed/36921129
http://dx.doi.org/10.1590/1980-549720230021
_version_ 1784903770429194240
author Delpino, Felipe Mendes
Figueiredo, Lílian Munhoz
Costa, Ândria Krolow
Carreno, Ioná
da Silva, Luan Nascimento
Flores, Alana Duarte
Pinheiro, Milena Afonso
da Silva, Eloisa Porciúncula
Marques, Gabriela Ávila
Saes, Mirelle de Oliveira
Duro, Suele Manjourany Silva
Facchini, Luiz Augusto
Vissoci, João Ricardo Nickenig
Flores, Thaynã Ramos
Demarco, Flávio Fernando
Blumenberg, Cauane
Chiavegatto, Alexandre Dias Porto
da Silva, Inácio Crochemore
Batista, Sandro Rodrigues
Arcêncio, Ricardo Alexandre
Nunes, Bruno Pereira
author_facet Delpino, Felipe Mendes
Figueiredo, Lílian Munhoz
Costa, Ândria Krolow
Carreno, Ioná
da Silva, Luan Nascimento
Flores, Alana Duarte
Pinheiro, Milena Afonso
da Silva, Eloisa Porciúncula
Marques, Gabriela Ávila
Saes, Mirelle de Oliveira
Duro, Suele Manjourany Silva
Facchini, Luiz Augusto
Vissoci, João Ricardo Nickenig
Flores, Thaynã Ramos
Demarco, Flávio Fernando
Blumenberg, Cauane
Chiavegatto, Alexandre Dias Porto
da Silva, Inácio Crochemore
Batista, Sandro Rodrigues
Arcêncio, Ricardo Alexandre
Nunes, Bruno Pereira
author_sort Delpino, Felipe Mendes
collection PubMed
description OBJETIVO: To describe the initial baseline results of a population-based study, as well as a protocol in order to evaluate the performance of different machine learning algorithms with the objective of predicting the demand for urgent and emergency services in a representative sample of adults from the urban area of Pelotas, Southern Brazil. METHODS: The study is entitled “Emergency department use and Artificial Intelligence in PELOTAS (RS) (EAI PELOTAS)” (https://wp.ufpel.edu.br/eaipelotas/). Between September and December 2021, a baseline was carried out with participants. A follow-up was planned to be conducted after 12 months in order to assess the use of urgent and emergency services in the last year. Afterwards, machine learning algorithms will be tested to predict the use of urgent and emergency services over one year. RESULTS: In total, 5,722 participants answered the survey, mostly females (66.8%), with an average age of 50.3 years. The mean number of household people was 2.6. Most of the sample has white skin color and incomplete elementary school or less. Around 30% of the sample has obesity, 14% diabetes, and 39% hypertension. CONCLUSION: The present paper presented a protocol describing the steps that were and will be taken to produce a model capable of predicting the demand for urgent and emergency services in one year among residents of Pelotas, in Rio Grande do Sul state.
format Online
Article
Text
id pubmed-10000014
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Associação Brasileira de Saúde Coletiva
record_format MEDLINE/PubMed
spelling pubmed-100000142023-03-11 Emergency department use and Artificial Intelligence in Pelotas: design and baseline results Delpino, Felipe Mendes Figueiredo, Lílian Munhoz Costa, Ândria Krolow Carreno, Ioná da Silva, Luan Nascimento Flores, Alana Duarte Pinheiro, Milena Afonso da Silva, Eloisa Porciúncula Marques, Gabriela Ávila Saes, Mirelle de Oliveira Duro, Suele Manjourany Silva Facchini, Luiz Augusto Vissoci, João Ricardo Nickenig Flores, Thaynã Ramos Demarco, Flávio Fernando Blumenberg, Cauane Chiavegatto, Alexandre Dias Porto da Silva, Inácio Crochemore Batista, Sandro Rodrigues Arcêncio, Ricardo Alexandre Nunes, Bruno Pereira Rev Bras Epidemiol Artigo Original OBJETIVO: To describe the initial baseline results of a population-based study, as well as a protocol in order to evaluate the performance of different machine learning algorithms with the objective of predicting the demand for urgent and emergency services in a representative sample of adults from the urban area of Pelotas, Southern Brazil. METHODS: The study is entitled “Emergency department use and Artificial Intelligence in PELOTAS (RS) (EAI PELOTAS)” (https://wp.ufpel.edu.br/eaipelotas/). Between September and December 2021, a baseline was carried out with participants. A follow-up was planned to be conducted after 12 months in order to assess the use of urgent and emergency services in the last year. Afterwards, machine learning algorithms will be tested to predict the use of urgent and emergency services over one year. RESULTS: In total, 5,722 participants answered the survey, mostly females (66.8%), with an average age of 50.3 years. The mean number of household people was 2.6. Most of the sample has white skin color and incomplete elementary school or less. Around 30% of the sample has obesity, 14% diabetes, and 39% hypertension. CONCLUSION: The present paper presented a protocol describing the steps that were and will be taken to produce a model capable of predicting the demand for urgent and emergency services in one year among residents of Pelotas, in Rio Grande do Sul state. Associação Brasileira de Saúde Coletiva 2023-03-10 /pmc/articles/PMC10000014/ /pubmed/36921129 http://dx.doi.org/10.1590/1980-549720230021 Text en https://creativecommons.org/licenses/by/4.0/Este é um artigo publicado em acesso aberto sob uma licença Creative Commons
spellingShingle Artigo Original
Delpino, Felipe Mendes
Figueiredo, Lílian Munhoz
Costa, Ândria Krolow
Carreno, Ioná
da Silva, Luan Nascimento
Flores, Alana Duarte
Pinheiro, Milena Afonso
da Silva, Eloisa Porciúncula
Marques, Gabriela Ávila
Saes, Mirelle de Oliveira
Duro, Suele Manjourany Silva
Facchini, Luiz Augusto
Vissoci, João Ricardo Nickenig
Flores, Thaynã Ramos
Demarco, Flávio Fernando
Blumenberg, Cauane
Chiavegatto, Alexandre Dias Porto
da Silva, Inácio Crochemore
Batista, Sandro Rodrigues
Arcêncio, Ricardo Alexandre
Nunes, Bruno Pereira
Emergency department use and Artificial Intelligence in Pelotas: design and baseline results
title Emergency department use and Artificial Intelligence in Pelotas: design and baseline results
title_full Emergency department use and Artificial Intelligence in Pelotas: design and baseline results
title_fullStr Emergency department use and Artificial Intelligence in Pelotas: design and baseline results
title_full_unstemmed Emergency department use and Artificial Intelligence in Pelotas: design and baseline results
title_short Emergency department use and Artificial Intelligence in Pelotas: design and baseline results
title_sort emergency department use and artificial intelligence in pelotas: design and baseline results
topic Artigo Original
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10000014/
https://www.ncbi.nlm.nih.gov/pubmed/36921129
http://dx.doi.org/10.1590/1980-549720230021
work_keys_str_mv AT delpinofelipemendes emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults
AT figueiredolilianmunhoz emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults
AT costaandriakrolow emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults
AT carrenoiona emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults
AT dasilvaluannascimento emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults
AT floresalanaduarte emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults
AT pinheiromilenaafonso emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults
AT dasilvaeloisaporciuncula emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults
AT marquesgabrielaavila emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults
AT saesmirelledeoliveira emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults
AT durosuelemanjouranysilva emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults
AT facchiniluizaugusto emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults
AT vissocijoaoricardonickenig emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults
AT floresthaynaramos emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults
AT demarcoflaviofernando emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults
AT blumenbergcauane emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults
AT chiavegattoalexandrediasporto emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults
AT dasilvainaciocrochemore emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults
AT batistasandrorodrigues emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults
AT arcencioricardoalexandre emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults
AT nunesbrunopereira emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults