Cargando…
Emergency department use and Artificial Intelligence in Pelotas: design and baseline results
OBJETIVO: To describe the initial baseline results of a population-based study, as well as a protocol in order to evaluate the performance of different machine learning algorithms with the objective of predicting the demand for urgent and emergency services in a representative sample of adults from...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Associação Brasileira de Saúde Coletiva
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10000014/ https://www.ncbi.nlm.nih.gov/pubmed/36921129 http://dx.doi.org/10.1590/1980-549720230021 |
_version_ | 1784903770429194240 |
---|---|
author | Delpino, Felipe Mendes Figueiredo, Lílian Munhoz Costa, Ândria Krolow Carreno, Ioná da Silva, Luan Nascimento Flores, Alana Duarte Pinheiro, Milena Afonso da Silva, Eloisa Porciúncula Marques, Gabriela Ávila Saes, Mirelle de Oliveira Duro, Suele Manjourany Silva Facchini, Luiz Augusto Vissoci, João Ricardo Nickenig Flores, Thaynã Ramos Demarco, Flávio Fernando Blumenberg, Cauane Chiavegatto, Alexandre Dias Porto da Silva, Inácio Crochemore Batista, Sandro Rodrigues Arcêncio, Ricardo Alexandre Nunes, Bruno Pereira |
author_facet | Delpino, Felipe Mendes Figueiredo, Lílian Munhoz Costa, Ândria Krolow Carreno, Ioná da Silva, Luan Nascimento Flores, Alana Duarte Pinheiro, Milena Afonso da Silva, Eloisa Porciúncula Marques, Gabriela Ávila Saes, Mirelle de Oliveira Duro, Suele Manjourany Silva Facchini, Luiz Augusto Vissoci, João Ricardo Nickenig Flores, Thaynã Ramos Demarco, Flávio Fernando Blumenberg, Cauane Chiavegatto, Alexandre Dias Porto da Silva, Inácio Crochemore Batista, Sandro Rodrigues Arcêncio, Ricardo Alexandre Nunes, Bruno Pereira |
author_sort | Delpino, Felipe Mendes |
collection | PubMed |
description | OBJETIVO: To describe the initial baseline results of a population-based study, as well as a protocol in order to evaluate the performance of different machine learning algorithms with the objective of predicting the demand for urgent and emergency services in a representative sample of adults from the urban area of Pelotas, Southern Brazil. METHODS: The study is entitled “Emergency department use and Artificial Intelligence in PELOTAS (RS) (EAI PELOTAS)” (https://wp.ufpel.edu.br/eaipelotas/). Between September and December 2021, a baseline was carried out with participants. A follow-up was planned to be conducted after 12 months in order to assess the use of urgent and emergency services in the last year. Afterwards, machine learning algorithms will be tested to predict the use of urgent and emergency services over one year. RESULTS: In total, 5,722 participants answered the survey, mostly females (66.8%), with an average age of 50.3 years. The mean number of household people was 2.6. Most of the sample has white skin color and incomplete elementary school or less. Around 30% of the sample has obesity, 14% diabetes, and 39% hypertension. CONCLUSION: The present paper presented a protocol describing the steps that were and will be taken to produce a model capable of predicting the demand for urgent and emergency services in one year among residents of Pelotas, in Rio Grande do Sul state. |
format | Online Article Text |
id | pubmed-10000014 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Associação Brasileira de Saúde Coletiva |
record_format | MEDLINE/PubMed |
spelling | pubmed-100000142023-03-11 Emergency department use and Artificial Intelligence in Pelotas: design and baseline results Delpino, Felipe Mendes Figueiredo, Lílian Munhoz Costa, Ândria Krolow Carreno, Ioná da Silva, Luan Nascimento Flores, Alana Duarte Pinheiro, Milena Afonso da Silva, Eloisa Porciúncula Marques, Gabriela Ávila Saes, Mirelle de Oliveira Duro, Suele Manjourany Silva Facchini, Luiz Augusto Vissoci, João Ricardo Nickenig Flores, Thaynã Ramos Demarco, Flávio Fernando Blumenberg, Cauane Chiavegatto, Alexandre Dias Porto da Silva, Inácio Crochemore Batista, Sandro Rodrigues Arcêncio, Ricardo Alexandre Nunes, Bruno Pereira Rev Bras Epidemiol Artigo Original OBJETIVO: To describe the initial baseline results of a population-based study, as well as a protocol in order to evaluate the performance of different machine learning algorithms with the objective of predicting the demand for urgent and emergency services in a representative sample of adults from the urban area of Pelotas, Southern Brazil. METHODS: The study is entitled “Emergency department use and Artificial Intelligence in PELOTAS (RS) (EAI PELOTAS)” (https://wp.ufpel.edu.br/eaipelotas/). Between September and December 2021, a baseline was carried out with participants. A follow-up was planned to be conducted after 12 months in order to assess the use of urgent and emergency services in the last year. Afterwards, machine learning algorithms will be tested to predict the use of urgent and emergency services over one year. RESULTS: In total, 5,722 participants answered the survey, mostly females (66.8%), with an average age of 50.3 years. The mean number of household people was 2.6. Most of the sample has white skin color and incomplete elementary school or less. Around 30% of the sample has obesity, 14% diabetes, and 39% hypertension. CONCLUSION: The present paper presented a protocol describing the steps that were and will be taken to produce a model capable of predicting the demand for urgent and emergency services in one year among residents of Pelotas, in Rio Grande do Sul state. Associação Brasileira de Saúde Coletiva 2023-03-10 /pmc/articles/PMC10000014/ /pubmed/36921129 http://dx.doi.org/10.1590/1980-549720230021 Text en https://creativecommons.org/licenses/by/4.0/Este é um artigo publicado em acesso aberto sob uma licença Creative Commons |
spellingShingle | Artigo Original Delpino, Felipe Mendes Figueiredo, Lílian Munhoz Costa, Ândria Krolow Carreno, Ioná da Silva, Luan Nascimento Flores, Alana Duarte Pinheiro, Milena Afonso da Silva, Eloisa Porciúncula Marques, Gabriela Ávila Saes, Mirelle de Oliveira Duro, Suele Manjourany Silva Facchini, Luiz Augusto Vissoci, João Ricardo Nickenig Flores, Thaynã Ramos Demarco, Flávio Fernando Blumenberg, Cauane Chiavegatto, Alexandre Dias Porto da Silva, Inácio Crochemore Batista, Sandro Rodrigues Arcêncio, Ricardo Alexandre Nunes, Bruno Pereira Emergency department use and Artificial Intelligence in Pelotas: design and baseline results |
title | Emergency department use and Artificial Intelligence in Pelotas: design and baseline results |
title_full | Emergency department use and Artificial Intelligence in Pelotas: design and baseline results |
title_fullStr | Emergency department use and Artificial Intelligence in Pelotas: design and baseline results |
title_full_unstemmed | Emergency department use and Artificial Intelligence in Pelotas: design and baseline results |
title_short | Emergency department use and Artificial Intelligence in Pelotas: design and baseline results |
title_sort | emergency department use and artificial intelligence in pelotas: design and baseline results |
topic | Artigo Original |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10000014/ https://www.ncbi.nlm.nih.gov/pubmed/36921129 http://dx.doi.org/10.1590/1980-549720230021 |
work_keys_str_mv | AT delpinofelipemendes emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults AT figueiredolilianmunhoz emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults AT costaandriakrolow emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults AT carrenoiona emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults AT dasilvaluannascimento emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults AT floresalanaduarte emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults AT pinheiromilenaafonso emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults AT dasilvaeloisaporciuncula emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults AT marquesgabrielaavila emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults AT saesmirelledeoliveira emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults AT durosuelemanjouranysilva emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults AT facchiniluizaugusto emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults AT vissocijoaoricardonickenig emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults AT floresthaynaramos emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults AT demarcoflaviofernando emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults AT blumenbergcauane emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults AT chiavegattoalexandrediasporto emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults AT dasilvainaciocrochemore emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults AT batistasandrorodrigues emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults AT arcencioricardoalexandre emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults AT nunesbrunopereira emergencydepartmentuseandartificialintelligenceinpelotasdesignandbaselineresults |