Cargando…
Molecular Cytogenetics in Domestic Bovids: A Review
SIMPLE SUMMARY: Molecular cytogenetics, and particularly the use of fluorescence in situ hybridization (FISH), has allowed deeper investigation of the chromosomes of domestic animals in order to: (a) create physical maps of specific DNA sequences on chromosome regions; (b) use specific chromosome ma...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10000107/ https://www.ncbi.nlm.nih.gov/pubmed/36899801 http://dx.doi.org/10.3390/ani13050944 |
_version_ | 1784903793818730496 |
---|---|
author | Iannuzzi, Alessandra Iannuzzi, Leopoldo Parma, Pietro |
author_facet | Iannuzzi, Alessandra Iannuzzi, Leopoldo Parma, Pietro |
author_sort | Iannuzzi, Alessandra |
collection | PubMed |
description | SIMPLE SUMMARY: Molecular cytogenetics, and particularly the use of fluorescence in situ hybridization (FISH), has allowed deeper investigation of the chromosomes of domestic animals in order to: (a) create physical maps of specific DNA sequences on chromosome regions; (b) use specific chromosome markers to confirm the identification of chromosomes or chromosome regions involved in chromosome abnormalities, especially when poor banding patterns are produced; (c) better anchor radiation hybrid and genetic maps to specific chromosome regions; (d) better compare related and unrelated species by comparative FISH mapping and/or Zoo-FISH techniques; (e) study meiotic segregation, especially by sperm-FISH, in some chromosome abnormalities; (f) better show conserved or lost DNA sequences in chromosome abnormalities; (g) use informatic and genomic reconstructions, in addition to CGH arrays in related species, to predict conserved or lost chromosome regions; and (h) study some chromosome abnormalities and genomic stability using PCR applications. This review summarizes the most important applications of molecular cytogenetics in domestic bovids, with an emphasis on FISH mapping applications. ABSTRACT: The discovery of the Robertsonian translocation (rob) involving cattle chromosomes 1 and 29 and the demonstration of its deleterious effects on fertility focused the interest of many scientific groups on using chromosome banding techniques to reveal chromosome abnormalities and verify their effects on fertility in domestic animals. At the same time, comparative banding studies among various species of domestic or wild animals were found useful for delineating chromosome evolution among species. The advent of molecular cytogenetics, particularly the use of fluorescence in situ hybridization (FISH), has allowed a deeper investigation of the chromosomes of domestic animals through: (a) the physical mapping of specific DNA sequences on chromosome regions; (b) the use of specific chromosome markers for the identification of the chromosomes or chromosome regions involved in chromosome abnormalities, especially when poor banding patterns are produced; (c) better anchoring of radiation hybrid and genetic maps to specific chromosome regions; (d) better comparisons of related and unrelated species by comparative FISH mapping and/or Zoo-FISH techniques; (e) the study of meiotic segregation, especially by sperm-FISH, in some chromosome abnormalities; (f) better demonstration of conserved or lost DNA sequences in chromosome abnormalities; (g) the use of informatic and genomic reconstructions, in addition to CGH arrays, to predict conserved or lost chromosome regions in related species; and (h) the study of some chromosome abnormalities and genomic stability using PCR applications. This review summarizes the most important applications of molecular cytogenetics in domestic bovids, with an emphasis on FISH mapping applications. |
format | Online Article Text |
id | pubmed-10000107 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100001072023-03-11 Molecular Cytogenetics in Domestic Bovids: A Review Iannuzzi, Alessandra Iannuzzi, Leopoldo Parma, Pietro Animals (Basel) Review SIMPLE SUMMARY: Molecular cytogenetics, and particularly the use of fluorescence in situ hybridization (FISH), has allowed deeper investigation of the chromosomes of domestic animals in order to: (a) create physical maps of specific DNA sequences on chromosome regions; (b) use specific chromosome markers to confirm the identification of chromosomes or chromosome regions involved in chromosome abnormalities, especially when poor banding patterns are produced; (c) better anchor radiation hybrid and genetic maps to specific chromosome regions; (d) better compare related and unrelated species by comparative FISH mapping and/or Zoo-FISH techniques; (e) study meiotic segregation, especially by sperm-FISH, in some chromosome abnormalities; (f) better show conserved or lost DNA sequences in chromosome abnormalities; (g) use informatic and genomic reconstructions, in addition to CGH arrays in related species, to predict conserved or lost chromosome regions; and (h) study some chromosome abnormalities and genomic stability using PCR applications. This review summarizes the most important applications of molecular cytogenetics in domestic bovids, with an emphasis on FISH mapping applications. ABSTRACT: The discovery of the Robertsonian translocation (rob) involving cattle chromosomes 1 and 29 and the demonstration of its deleterious effects on fertility focused the interest of many scientific groups on using chromosome banding techniques to reveal chromosome abnormalities and verify their effects on fertility in domestic animals. At the same time, comparative banding studies among various species of domestic or wild animals were found useful for delineating chromosome evolution among species. The advent of molecular cytogenetics, particularly the use of fluorescence in situ hybridization (FISH), has allowed a deeper investigation of the chromosomes of domestic animals through: (a) the physical mapping of specific DNA sequences on chromosome regions; (b) the use of specific chromosome markers for the identification of the chromosomes or chromosome regions involved in chromosome abnormalities, especially when poor banding patterns are produced; (c) better anchoring of radiation hybrid and genetic maps to specific chromosome regions; (d) better comparisons of related and unrelated species by comparative FISH mapping and/or Zoo-FISH techniques; (e) the study of meiotic segregation, especially by sperm-FISH, in some chromosome abnormalities; (f) better demonstration of conserved or lost DNA sequences in chromosome abnormalities; (g) the use of informatic and genomic reconstructions, in addition to CGH arrays, to predict conserved or lost chromosome regions in related species; and (h) the study of some chromosome abnormalities and genomic stability using PCR applications. This review summarizes the most important applications of molecular cytogenetics in domestic bovids, with an emphasis on FISH mapping applications. MDPI 2023-03-06 /pmc/articles/PMC10000107/ /pubmed/36899801 http://dx.doi.org/10.3390/ani13050944 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Iannuzzi, Alessandra Iannuzzi, Leopoldo Parma, Pietro Molecular Cytogenetics in Domestic Bovids: A Review |
title | Molecular Cytogenetics in Domestic Bovids: A Review |
title_full | Molecular Cytogenetics in Domestic Bovids: A Review |
title_fullStr | Molecular Cytogenetics in Domestic Bovids: A Review |
title_full_unstemmed | Molecular Cytogenetics in Domestic Bovids: A Review |
title_short | Molecular Cytogenetics in Domestic Bovids: A Review |
title_sort | molecular cytogenetics in domestic bovids: a review |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10000107/ https://www.ncbi.nlm.nih.gov/pubmed/36899801 http://dx.doi.org/10.3390/ani13050944 |
work_keys_str_mv | AT iannuzzialessandra molecularcytogeneticsindomesticbovidsareview AT iannuzzileopoldo molecularcytogeneticsindomesticbovidsareview AT parmapietro molecularcytogeneticsindomesticbovidsareview |