Cargando…
Utilization of a Machine Learning Algorithm for the Application of Ancillary Features to LI-RADS Categories LR3 and LR4 on Gadoxetate Disodium-Enhanced MRI
SIMPLE SUMMARY: In the Liver Imaging Reporting and Data System (LI-RADS), liver observations are categorized as LR1-LR5 according to the probability of benign and hepatoma on the basis of major features. Subsequent adjustment is allowed using ancillary features (AFs). However, the LI-RADS does not p...
Autores principales: | Park, Seongkeun, Byun, Jieun, Hwang, Sook Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10000173/ https://www.ncbi.nlm.nih.gov/pubmed/36900153 http://dx.doi.org/10.3390/cancers15051361 |
Ejemplares similares
-
Deep learning LI-RADS grading system based on contrast enhanced multiphase MRI for differentiation between LR-3 and LR-4/LR-5 liver tumors
por: Wu, Yunan, et al.
Publicado: (2020) -
Gadoxetic acid-enhanced MRI of hepatocellular carcinoma: Diagnostic performance of category-adjusted LR-5 using modified criteria
por: Park, Jae Hyon, et al.
Publicado: (2020) -
Prognosis of Single Early-Stage Hepatocellular Carcinoma (HCC) with CEUS Inconclusive Imaging (LI-RADS LR-3 and LR-4) Is No Better than Typical HCC (LR-5)
por: Terzi, Eleonora, et al.
Publicado: (2022) -
Microcystin-LR (MC-LR) Triggers Inflammatory Responses in Macrophages
por: Su, Robin C., et al.
Publicado: (2021) -
MRI-Based Radiomics Models to Discriminate Hepatocellular Carcinoma and Non-Hepatocellular Carcinoma in LR-M According to LI-RADS Version 2018
por: Zhang, Haiping, et al.
Publicado: (2022)