Cargando…

Dose Distribution of High Dose-Rate and Low Dose-Rate Prostate Brachytherapy at Different Intervals—Impact of a Hydrogel Spacer and Prostate Volume

SIMPLE SUMMARY: Two different prostate brachytherapy methods are applied to treat prostate cancer: either a permanent implant of low-dose-rate (LDR-BT) sources or a temporary implant of high-dose-rate (HDR-BT) sources. This study aimed to compare the dose distributions, specifically focusing on the...

Descripción completa

Detalles Bibliográficos
Autores principales: Haddad, Hathal, Hermani, Horst, Hanitzsch, Herbert, Heidrich, Albert, Pinkawa, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10000179/
https://www.ncbi.nlm.nih.gov/pubmed/36900188
http://dx.doi.org/10.3390/cancers15051396
Descripción
Sumario:SIMPLE SUMMARY: Two different prostate brachytherapy methods are applied to treat prostate cancer: either a permanent implant of low-dose-rate (LDR-BT) sources or a temporary implant of high-dose-rate (HDR-BT) sources. This study aimed to compare the dose distributions, specifically focusing on the impact of a prostate-rectum spacer and prostate volume. The prostate dose coverage was comparable between different techniques. HDR-BT was characterized by a considerably more homogenous dose distribution and lower doses to the urethra. The minimum dose of up to 5 mm from the prostate was higher for larger prostates. As a consequence of the hydrogel spacer in HDR-BT patients, the intraoperative rectum dose was considerably lower, especially in smaller prostates. However, prostate volume dose coverage was not improved. The dosimetric results explain the clinical differences between the techniques reported in the literature. ABSTRACT: The study aimed to compare the dose distribution in permanent low-dose-rate brachytherapy (LDR-BT) and high-dose-rate brachytherapy (HDR-BT), specifically focusing on the impact of a spacer and prostate volume. The relative dose distribution of 102 LDR-BT patients (prescription dose 145 Gy) at different intervals was compared with the dose distribution of 105 HDR-BT patients (232 HDR-BT fractions with prescription doses of 9 Gy, n = 151, or 11.5 Gy, n = 81). A hydrogel spacer (10 mL) was only injected before HDR-BT. For the analysis of dose coverage outside the prostate, a 5 mm margin was added to the prostate volume (PV+). Prostate V100 and D90 of HDR-BT and LDR-BT at different intervals were comparable. HDR-BT was characterized by a considerably more homogenous dose distribution and lower doses to the urethra. The minimum dose in 90% of PV+ was higher for larger prostates. As a consequence of the hydrogel spacer in HDR-BT patients, the intraoperative dose at the rectum was considerably lower, especially in smaller prostates. However, prostate volume dose coverage was not improved. The dosimetric results well explain clinical differences between these techniques reported in the literature review, specifically comparable tumor control, higher acute urinary toxicity rates in LDR-BT in comparison to HDR-BT, decreased rectal toxicity after spacer placement, and improved tumor control after HDR-BT in larger prostate volumes.