Cargando…
A Bimodal Emotion Recognition Approach through the Fusion of Electroencephalography and Facial Sequences
In recent years, human–computer interaction (HCI) systems have become increasingly popular. Some of these systems demand particular approaches for discriminating actual emotions through the use of better multimodal methods. In this work, a deep canonical correlation analysis (DCCA) based multimodal...
Autores principales: | Muhammad, Farah, Hussain, Muhammad, Aboalsamh, Hatim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10000366/ https://www.ncbi.nlm.nih.gov/pubmed/36900121 http://dx.doi.org/10.3390/diagnostics13050977 |
Ejemplares similares
-
Emotion detection using electroencephalography signals and a zero-time windowing-based epoch estimation and relevant electrode identification
por: Gannouni, Sofien, et al.
Publicado: (2021) -
Bimodal electroencephalography-functional magnetic resonance imaging dataset for inner-speech recognition
por: Simistira Liwicki, Foteini, et al.
Publicado: (2023) -
Expression-EEG Bimodal Fusion Emotion Recognition Method Based on Deep Learning
por: Lu, Yu, et al.
Publicado: (2021) -
Review on Emotion Recognition Based on Electroencephalography
por: Liu, Haoran, et al.
Publicado: (2021) -
Fusion of Facial Expressions and EEG for Multimodal Emotion Recognition
por: Huang, Yongrui, et al.
Publicado: (2017)