Cargando…
Role of Machine Learning-Based CT Body Composition in Risk Prediction and Prognostication: Current State and Future Directions
CT body composition analysis has been shown to play an important role in predicting health and has the potential to improve patient outcomes if implemented clinically. Recent advances in artificial intelligence and machine learning have led to high speed and accuracy for extracting body composition...
Autores principales: | Elhakim, Tarig, Trinh, Kelly, Mansur, Arian, Bridge, Christopher, Daye, Dania |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10000509/ https://www.ncbi.nlm.nih.gov/pubmed/36900112 http://dx.doi.org/10.3390/diagnostics13050968 |
Ejemplares similares
-
Role of artificial intelligence in risk prediction, prognostication, and therapy response assessment in colorectal cancer: current state and future directions
por: Mansur, Arian, et al.
Publicado: (2023) -
Machine Learning Improves the Prediction of Responses to Immune Checkpoint Inhibitors in Metastatic Melanoma
por: Tabari, Azadeh, et al.
Publicado: (2023) -
The Role of Artificial Intelligence in the Detection and Implementation of Biomarkers for Hepatocellular Carcinoma: Outlook and Opportunities
por: Mansur, Arian, et al.
Publicado: (2023) -
Suicide among Cancer Patients: Current Knowledge and Directions for Observational Research
por: Grobman, Ben, et al.
Publicado: (2023) -
Current status and future directions of ovarian cancer prognostic models
por: Kobayashi, Yusuke, et al.
Publicado: (2021)