Cargando…
Comparing Detection Schemes for Adversarial Images against Deep Learning Models for Cancer Imaging
SIMPLE SUMMARY: While deep learning has become a powerful tool in analysis of cancer imaging, deep learning models have potential vulnerabilities that pose security threats in the setting of clinical implementation. One weakness of deep learning models is that they can be deceived by adversarial ima...
Autores principales: | Joel, Marina Z., Avesta, Arman, Yang, Daniel X., Zhou, Jian-Ge, Omuro, Antonio, Herbst, Roy S., Krumholz, Harlan M., Aneja, Sanjay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10000732/ https://www.ncbi.nlm.nih.gov/pubmed/36900339 http://dx.doi.org/10.3390/cancers15051548 |
Ejemplares similares
-
Using Adversarial Images to Assess the Robustness of Deep Learning Models Trained on Diagnostic Images in Oncology
por: Joel, Marina Z., et al.
Publicado: (2022) -
Comparing 3D, 2.5D, and 2D Approaches to Brain Image Auto-Segmentation
por: Avesta, Arman, et al.
Publicado: (2023) -
PACS-Integrated Tools for Peritumoral Edema Volumetrics Provide Additional Information to RANO-BM-Based Assessment of Lung Cancer Brain Metastases after Stereotactic Radiotherapy: A Pilot Study
por: Kaur, Manpreet, et al.
Publicado: (2023) -
Universal adversarial attacks on deep neural networks for medical image classification
por: Hirano, Hokuto, et al.
Publicado: (2021) -
On the role of deep learning model complexity in adversarial robustness for medical images
por: Rodriguez, David, et al.
Publicado: (2022)