Cargando…
Impact of Cavitation Jet on the Structural, Emulsifying Features and Interfacial Features of Soluble Soybean Protein Oxidized Aggregates
A cavitation jet can enhance food proteins’ functionalities by regulating solvable oxidized soybean protein accumulates (SOSPI). We investigated the impacts of cavitation jet treatment on the emulsifying, structural and interfacial features of soluble soybean protein oxidation accumulate. Findings h...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10000764/ https://www.ncbi.nlm.nih.gov/pubmed/36900426 http://dx.doi.org/10.3390/foods12050909 |
_version_ | 1784903960799215616 |
---|---|
author | Guo, Yanan Liu, Caihua Wang, Yichang Ren, Shuanghe Zheng, Xueting Zhang, Jiayu Cheng, Tianfu Guo, Zengwang Wang, Zhongjiang |
author_facet | Guo, Yanan Liu, Caihua Wang, Yichang Ren, Shuanghe Zheng, Xueting Zhang, Jiayu Cheng, Tianfu Guo, Zengwang Wang, Zhongjiang |
author_sort | Guo, Yanan |
collection | PubMed |
description | A cavitation jet can enhance food proteins’ functionalities by regulating solvable oxidized soybean protein accumulates (SOSPI). We investigated the impacts of cavitation jet treatment on the emulsifying, structural and interfacial features of soluble soybean protein oxidation accumulate. Findings have shown that radicals in an oxidative environment not only induce proteins to form insoluble oxidative aggregates with a large particle size and high molecular weight, but also attack the protein side chains to form soluble small molecular weight protein aggregates. Emulsion prepared by SOSPI shows worse interface properties than OSPI. A cavitation jet at a short treating time (<6 min) has been shown to break the core aggregation skeleton of soybean protein insoluble aggregates, and insoluble aggregates into soluble aggregates resulting in an increase of emulsion activity (EAI) and constancy (ESI), and a decrease of interfacial tension from 25.15 to 20.19 mN/m. However, a cavitation jet at a long treating time (>6 min) would cause soluble oxidized aggregates to reaggregate through an anti-parallel intermolecular β-sheet, which resulted in lower EAI and ESI, and a higher interfacial tension (22.44 mN/m). The results showed that suitable cavitation jet treatment could adjust the structural and functional features of SOSPI by targeted regulated transformation between the soluble and insoluble components. |
format | Online Article Text |
id | pubmed-10000764 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100007642023-03-11 Impact of Cavitation Jet on the Structural, Emulsifying Features and Interfacial Features of Soluble Soybean Protein Oxidized Aggregates Guo, Yanan Liu, Caihua Wang, Yichang Ren, Shuanghe Zheng, Xueting Zhang, Jiayu Cheng, Tianfu Guo, Zengwang Wang, Zhongjiang Foods Article A cavitation jet can enhance food proteins’ functionalities by regulating solvable oxidized soybean protein accumulates (SOSPI). We investigated the impacts of cavitation jet treatment on the emulsifying, structural and interfacial features of soluble soybean protein oxidation accumulate. Findings have shown that radicals in an oxidative environment not only induce proteins to form insoluble oxidative aggregates with a large particle size and high molecular weight, but also attack the protein side chains to form soluble small molecular weight protein aggregates. Emulsion prepared by SOSPI shows worse interface properties than OSPI. A cavitation jet at a short treating time (<6 min) has been shown to break the core aggregation skeleton of soybean protein insoluble aggregates, and insoluble aggregates into soluble aggregates resulting in an increase of emulsion activity (EAI) and constancy (ESI), and a decrease of interfacial tension from 25.15 to 20.19 mN/m. However, a cavitation jet at a long treating time (>6 min) would cause soluble oxidized aggregates to reaggregate through an anti-parallel intermolecular β-sheet, which resulted in lower EAI and ESI, and a higher interfacial tension (22.44 mN/m). The results showed that suitable cavitation jet treatment could adjust the structural and functional features of SOSPI by targeted regulated transformation between the soluble and insoluble components. MDPI 2023-02-21 /pmc/articles/PMC10000764/ /pubmed/36900426 http://dx.doi.org/10.3390/foods12050909 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Guo, Yanan Liu, Caihua Wang, Yichang Ren, Shuanghe Zheng, Xueting Zhang, Jiayu Cheng, Tianfu Guo, Zengwang Wang, Zhongjiang Impact of Cavitation Jet on the Structural, Emulsifying Features and Interfacial Features of Soluble Soybean Protein Oxidized Aggregates |
title | Impact of Cavitation Jet on the Structural, Emulsifying Features and Interfacial Features of Soluble Soybean Protein Oxidized Aggregates |
title_full | Impact of Cavitation Jet on the Structural, Emulsifying Features and Interfacial Features of Soluble Soybean Protein Oxidized Aggregates |
title_fullStr | Impact of Cavitation Jet on the Structural, Emulsifying Features and Interfacial Features of Soluble Soybean Protein Oxidized Aggregates |
title_full_unstemmed | Impact of Cavitation Jet on the Structural, Emulsifying Features and Interfacial Features of Soluble Soybean Protein Oxidized Aggregates |
title_short | Impact of Cavitation Jet on the Structural, Emulsifying Features and Interfacial Features of Soluble Soybean Protein Oxidized Aggregates |
title_sort | impact of cavitation jet on the structural, emulsifying features and interfacial features of soluble soybean protein oxidized aggregates |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10000764/ https://www.ncbi.nlm.nih.gov/pubmed/36900426 http://dx.doi.org/10.3390/foods12050909 |
work_keys_str_mv | AT guoyanan impactofcavitationjetonthestructuralemulsifyingfeaturesandinterfacialfeaturesofsolublesoybeanproteinoxidizedaggregates AT liucaihua impactofcavitationjetonthestructuralemulsifyingfeaturesandinterfacialfeaturesofsolublesoybeanproteinoxidizedaggregates AT wangyichang impactofcavitationjetonthestructuralemulsifyingfeaturesandinterfacialfeaturesofsolublesoybeanproteinoxidizedaggregates AT renshuanghe impactofcavitationjetonthestructuralemulsifyingfeaturesandinterfacialfeaturesofsolublesoybeanproteinoxidizedaggregates AT zhengxueting impactofcavitationjetonthestructuralemulsifyingfeaturesandinterfacialfeaturesofsolublesoybeanproteinoxidizedaggregates AT zhangjiayu impactofcavitationjetonthestructuralemulsifyingfeaturesandinterfacialfeaturesofsolublesoybeanproteinoxidizedaggregates AT chengtianfu impactofcavitationjetonthestructuralemulsifyingfeaturesandinterfacialfeaturesofsolublesoybeanproteinoxidizedaggregates AT guozengwang impactofcavitationjetonthestructuralemulsifyingfeaturesandinterfacialfeaturesofsolublesoybeanproteinoxidizedaggregates AT wangzhongjiang impactofcavitationjetonthestructuralemulsifyingfeaturesandinterfacialfeaturesofsolublesoybeanproteinoxidizedaggregates |