Cargando…
Independent Validation of a Deep Learning nnU-Net Tool for Neuroblastoma Detection and Segmentation in MR Images
SIMPLE SUMMARY: Tumor segmentation is a key step in oncologic imaging processing. We have recently developed a model to detect and segment neuroblastic tumors on MR images based on deep learning architecture nnU-Net. In this work, we performed an independent validation of the automatic segmentation...
Autores principales: | Veiga-Canuto, Diana, Cerdà-Alberich, Leonor, Jiménez-Pastor, Ana, Carot Sierra, José Miguel, Gomis-Maya, Armando, Sangüesa-Nebot, Cinta, Fernández-Patón, Matías, Martínez de las Heras, Blanca, Taschner-Mandl, Sabine, Düster, Vanessa, Pötschger, Ulrike, Simon, Thorsten, Neri, Emanuele, Alberich-Bayarri, Ángel, Cañete, Adela, Hero, Barbara, Ladenstein, Ruth, Martí-Bonmatí, Luis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10000775/ https://www.ncbi.nlm.nih.gov/pubmed/36900410 http://dx.doi.org/10.3390/cancers15051622 |
Ejemplares similares
-
Comparative Multicentric Evaluation of Inter-Observer Variability in Manual and Automatic Segmentation of Neuroblastic Tumors in Magnetic Resonance Images
por: Veiga-Canuto, Diana, et al.
Publicado: (2022) -
A Confidence Habitats Methodology in MR Quantitative Diffusion for the Classification of Neuroblastic Tumors
por: Cerdá Alberich, Leonor, et al.
Publicado: (2020) -
A practical solution to estimate the sample size required for clinical prediction models generated from observational research on data
por: Baeza-Delgado, Carlos, et al.
Publicado: (2022) -
Lifelong nnU-Net: a framework for standardized medical continual learning
por: González, Camila, et al.
Publicado: (2023) -
An Algorithm for Automatic Rib Fracture Recognition Combined with nnU-Net and DenseNet
por: Zhang, Junzhong, et al.
Publicado: (2022)