Cargando…
Refined Automatic Brain Tumor Classification Using Hybrid Convolutional Neural Networks for MRI Scans
Refined hybrid convolutional neural networks are proposed in this work for classifying brain tumor classes based on MRI scans. A dataset of 2880 T1-weighted contrast-enhanced MRI brain scans are used. The dataset contains three main classes of brain tumors: gliomas, meningiomas, and pituitary tumors...
Autores principales: | AlTahhan, Fatma E., Khouqeer, Ghada A., Saadi, Sarmad, Elgarayhi, Ahmed, Sallah, Mohammed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10001035/ https://www.ncbi.nlm.nih.gov/pubmed/36900008 http://dx.doi.org/10.3390/diagnostics13050864 |
Ejemplares similares
-
Multi-Branch Convolutional Neural Network for Automatic Sleep Stage Classification with Embedded Stage Refinement and Residual Attention Channel Fusion
por: Zhu, Tianqi, et al.
Publicado: (2020) -
Automatic bolus tracking in abdominal CT scans with convolutional neural networks
por: Li, Angela T., et al.
Publicado: (2023) -
The potential for clinical application of automatic quantification of olfactory bulb volume in MRI scans using convolutional neural networks
por: Postma, Elbrich M., et al.
Publicado: (2023) -
An MRI Scans-Based Alzheimer’s Disease Detection via Convolutional Neural Network and Transfer Learning
por: Chui, Kwok Tai, et al.
Publicado: (2022) -
Optimization of convolutional neural network hyperparameters for automatic classification of adult mosquitoes
por: Motta, Daniel, et al.
Publicado: (2020)