Cargando…
Xanthine Oxidase Inhibitory Peptides from Larimichthys polyactis: Characterization and In Vitro/In Silico Evidence
Hyperuricemia is linked to a variety of disorders that can have serious consequences for human health. Peptides that inhibit xanthine oxidase (XO) are expected to be a safe and effective functional ingredient for the treatment or relief of hyperuricemia. The goal of this study was to discover whethe...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10001067/ https://www.ncbi.nlm.nih.gov/pubmed/36900499 http://dx.doi.org/10.3390/foods12050982 |
Sumario: | Hyperuricemia is linked to a variety of disorders that can have serious consequences for human health. Peptides that inhibit xanthine oxidase (XO) are expected to be a safe and effective functional ingredient for the treatment or relief of hyperuricemia. The goal of this study was to discover whether papain small yellow croaker hydrolysates (SYCHs) have potent xanthine oxidase inhibitory (XOI) activity. The results showed that compared to the XOI activity of SYCHs (IC(50) = 33.40 ± 0.26 mg/mL), peptides with a molecular weight (MW) of less than 3 kDa (UF-3) after ultrafiltration (UF) had stronger XOI activity, which was reduced to IC(50) = 25.87 ± 0.16 mg/mL (p < 0.05). Two peptides were identified from UF-3 using nano-high-performance liquid chromatography–tandem mass spectrometry. These two peptides were chemically synthesized and tested for XOI activity in vitro. Trp-Asp-Asp-Met-Glu-Lys-Ile-Trp (WDDMEKIW) (p < 0.05) had the stronger XOI activity (IC(50) = 3.16 ± 0.03 mM). The XOI activity IC(50) of the other peptide, Ala-Pro-Pro-Glu-Arg-Lys-Tyr-Ser-Val-Trp (APPERKYSVW), was 5.86 ± 0.02 mM. According to amino acid sequence results, the peptides contained at least 50% hydrophobic amino acids, which might be responsible for reducing xanthine oxidase (XO) catalytic activity. Furthermore, the inhibition of the peptides (WDDMEKIW and APPERKYSVW) against XO may depend on their binding to the XO active site. According to molecular docking, certain peptides made from small yellow croaker proteins were able to bind to the XO active site through hydrogen bonds and hydrophobic interactions. The results of this work illuminate SYCHs as a promising functional candidate for the prevention of hyperuricemia. |
---|