Cargando…
Adaptive Aquila Optimizer with Explainable Artificial Intelligence-Enabled Cancer Diagnosis on Medical Imaging
SIMPLE SUMMARY: For automated cancer diagnosis on medical imaging, explainable artificial intelligence technology uses advanced image analysis methods like deep learning to make a diagnosis and analyze medical images, as well as provide a clear explanation for how it arrived at its diagnosis. The ob...
Autores principales: | Alkhalaf, Salem, Alturise, Fahad, Bahaddad, Adel Aboud, Elnaim, Bushra M. Elamin, Shabana, Samah, Abdel-Khalek, Sayed, Mansour, Romany F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10001070/ https://www.ncbi.nlm.nih.gov/pubmed/36900283 http://dx.doi.org/10.3390/cancers15051492 |
Ejemplares similares
-
Intelligent Deep Learning Enabled Oral Squamous Cell Carcinoma Detection and Classification Using Biomedical Images
por: Alanazi, Adwan A., et al.
Publicado: (2022) -
Leveraging Tweets for Artificial Intelligence Driven Sentiment Analysis on the COVID-19 Pandemic
por: Alkhaldi, Nora A., et al.
Publicado: (2022) -
Artificial intelligence based optimization with deep learning model for blockchain enabled intrusion detection in CPS environment
por: Mansour, Romany F.
Publicado: (2022) -
Design of cultural emperor penguin optimizer for energy-efficient resource scheduling in green cloud computing environment
por: Mansour, Romany F., et al.
Publicado: (2022) -
3D Input Convolutional Neural Network for SSVEP Classification in Design of Brain Computer Interface for Patient User
por: Oralhan, Zeki, et al.
Publicado: (2022)