Cargando…
Interpretable and Reliable Oral Cancer Classifier with Attention Mechanism and Expert Knowledge Embedding via Attention Map
SIMPLE SUMMARY: Convolutional neural networks (CNNs) have shown promising performance in recognizing oral cancer. However, the lack of interpretability and reliability remain major challenges in the development of trustworthy computer-aided diagnosis systems. To address this issue, we proposed a neu...
Autores principales: | Song, Bofan, Zhang, Chicheng, Sunny, Sumsum, KC, Dharma Raj, Li, Shaobai, Gurushanth, Keerthi, Mendonca, Pramila, Mukhia, Nirza, Patrick, Sanjana, Gurudath, Shubha, Raghavan, Subhashini, Tsusennaro, Imchen, Leivon, Shirley T., Kolur, Trupti, Shetty, Vivek, Bushan, Vidya, Ramesh, Rohan, Pillai, Vijay, Wilder-Smith, Petra, Suresh, Amritha, Kuriakose, Moni Abraham, Birur, Praveen, Liang, Rongguang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10001266/ https://www.ncbi.nlm.nih.gov/pubmed/36900210 http://dx.doi.org/10.3390/cancers15051421 |
Ejemplares similares
-
Interpretable deep learning approach for oral cancer classification using guided attention inference network
por: Figueroa, Kevin Chew, et al.
Publicado: (2022) -
Exploring uncertainty measures in convolutional neural network for semantic segmentation of oral cancer images
por: Song, Bofan, et al.
Publicado: (2022) -
Classification of imbalanced oral cancer image data from high-risk population
por: Song, Bofan, et al.
Publicado: (2021) -
Mobile-based oral cancer classification for point-of-care screening
por: Song, Bofan, et al.
Publicado: (2021) -
Inter-observer agreement among specialists in the diagnosis of Oral Potentially Malignant Disorders and Oral Cancer using Store-and-Forward technology
por: Gurushanth, Keerthi, et al.
Publicado: (2023)