Cargando…
CSGNN: Contamination Warning and Control of Food Quality via Contrastive Self-Supervised Learning-Based Graph Neural Network
Effective contamination warning and control of food quality can significantly reduce the likelihood of food quality safety incidents. Existing food contamination warning models for food quality rely on supervised learning, do not model the complex feature associations between detection samples, and...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10001316/ https://www.ncbi.nlm.nih.gov/pubmed/36900566 http://dx.doi.org/10.3390/foods12051048 |