Cargando…
CSGNN: Contamination Warning and Control of Food Quality via Contrastive Self-Supervised Learning-Based Graph Neural Network
Effective contamination warning and control of food quality can significantly reduce the likelihood of food quality safety incidents. Existing food contamination warning models for food quality rely on supervised learning, do not model the complex feature associations between detection samples, and...
Autores principales: | Yan, Junyi, Li, Hongyi, Zuo, Enguang, Li, Tianle, Chen, Chen, Chen, Cheng, Lv, Xiaoyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10001316/ https://www.ncbi.nlm.nih.gov/pubmed/36900566 http://dx.doi.org/10.3390/foods12051048 |
Ejemplares similares
-
An ensemble of AHP-EW and AE-RNN for food safety risk early warning
por: Zhong, Jie, et al.
Publicado: (2023) -
Anomaly Score-Based Risk Early Warning System for Rapidly Controlling Food Safety Risk
por: Zuo, Enguang, et al.
Publicado: (2022) -
Rapidly detecting fennel origin of the near-infrared spectroscopy based on extreme learning machine
por: Zuo, Enguang, et al.
Publicado: (2022) -
Supervised biological network alignment with graph neural networks
por: Ding, Kerr, et al.
Publicado: (2023) -
A novel fast method for identifying the origin of Maojian using NIR spectroscopy with deep learning algorithms
por: Chang, Chenjie, et al.
Publicado: (2022)