Cargando…
Deep Hybrid Learning Prediction of Patient-Specific Quality Assurance in Radiotherapy: Implementation in Clinical Routine
Background: Arc therapy allows for better dose deposition conformation, but the radiotherapy plans (RT plans) are more complex, requiring patient-specific pre-treatment quality assurance (QA). In turn, pre-treatment QA adds to the workload. The objective of this study was to develop a predictive mod...
Autores principales: | Moreau, Noémie, Bonnor, Laurine, Jaudet, Cyril, Lechippey, Laetitia, Falzone, Nadia, Batalla, Alain, Bertaut, Cindy, Corroyer-Dulmont, Aurélien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10001389/ https://www.ncbi.nlm.nih.gov/pubmed/36900087 http://dx.doi.org/10.3390/diagnostics13050943 |
Ejemplares similares
-
The Impact of Artificial Intelligence CNN Based Denoising on FDG PET Radiomics
por: Jaudet, Cyril, et al.
Publicado: (2021) -
The Impact of Resampling and Denoising Deep Learning Algorithms on Radiomics in Brain Metastases MRI
por: Moummad, Ilyass, et al.
Publicado: (2021) -
Radioimmunotherapy for Brain Metastases: The Potential for Inflammation as a Target of Choice
por: Corroyer-Dulmont, Aurélien, et al.
Publicado: (2021) -
Deep Learning Denoising Improves and Homogenizes Patient [(18)F]FDG PET Image Quality in Digital PET/CT
por: Weyts, Kathleen, et al.
Publicado: (2023) -
Artificial intelligence-based PET denoising could allow a two-fold reduction in [(18)F]FDG PET acquisition time in digital PET/CT
por: Weyts, Kathleen, et al.
Publicado: (2022)