Cargando…
Efficient U-Net Architecture with Multiple Encoders and Attention Mechanism Decoders for Brain Tumor Segmentation
The brain is the center of human control and communication. Hence, it is very important to protect it and provide ideal conditions for it to function. Brain cancer remains one of the leading causes of death in the world, and the detection of malignant brain tumors is a priority in medical image segm...
Autores principales: | Aboussaleh, Ilyasse, Riffi, Jamal, Fazazy, Khalid El, Mahraz, Mohamed Adnane, Tairi, Hamid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10001391/ https://www.ncbi.nlm.nih.gov/pubmed/36900017 http://dx.doi.org/10.3390/diagnostics13050872 |
Ejemplares similares
-
Brain Tumor Segmentation Based on Deep Learning’s Feature Representation
por: Aboussaleh, Ilyasse, et al.
Publicado: (2021) -
HEA-Net: Attention and MLP Hybrid Encoder Architecture for Medical Image Segmentation
por: An, Lijing, et al.
Publicado: (2022) -
Efficient attention-based deep encoder and decoder for automatic crack segmentation
por: Kang, Dong H, et al.
Publicado: (2021) -
COVID-SegNet: encoder–decoder-based architecture for COVID-19 lesion segmentation in chest X-ray
por: Agrawal, Tarun, et al.
Publicado: (2023) -
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022)