Cargando…
Numerical Simulation Study on Spatial Diffusion Behavior of Non-Point Source Fugitive Dust under Different Enclosure Heights
Non-point source fugitive dust produced during municipal road construction is one of the main ambient air pollutants gravely threatening the life and health of construction workers and residents around construction areas. In this study, a gas-solid two-phase flow model is used to simulate the diffus...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10001868/ https://www.ncbi.nlm.nih.gov/pubmed/36901370 http://dx.doi.org/10.3390/ijerph20054361 |
Sumario: | Non-point source fugitive dust produced during municipal road construction is one of the main ambient air pollutants gravely threatening the life and health of construction workers and residents around construction areas. In this study, a gas-solid two-phase flow model is used to simulate the diffusion behavior of non-point source dust with different enclosure heights under wind loads. Moreover, the inhibitory effect of the enclosure on the diffusion of non-point source dust from construction to residential areas is analyzed. The results show that the physical blocking and reflux effects of the enclosure can effectively restrain dust diffusion. When the enclosure height is 3–3.5 m, the concentration of particulate matter in most sections of residential areas can be reduced to less than 40 μg/m(3). Moreover, when the wind speed is 1–5 m/s and the enclosure height is 2–3.5 m, the diffusion height of non-point source dust particles above the enclosure is concentrated in the range 1.5–2 m. This study provides a scientific basis for setting the heights of enclosures and atomization sprinklers at construction sites. Further, effective measures are proposed to reduce the impact of non-point source dust on the air environment of residential areas and health of residents. |
---|