Cargando…
Automated Monkeypox Skin Lesion Detection Using Deep Learning and Transfer Learning Techniques
The current outbreak of monkeypox (mpox) has become a major public health concern because of the quick spread of this disease across multiple countries. Early detection and diagnosis of mpox is crucial for effective treatment and management. Considering this, the purpose of this research was to dete...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10001976/ https://www.ncbi.nlm.nih.gov/pubmed/36901430 http://dx.doi.org/10.3390/ijerph20054422 |
Sumario: | The current outbreak of monkeypox (mpox) has become a major public health concern because of the quick spread of this disease across multiple countries. Early detection and diagnosis of mpox is crucial for effective treatment and management. Considering this, the purpose of this research was to detect and validate the best performing model for detecting mpox using deep learning approaches and classification models. To achieve this goal, we evaluated the performance of five common pretrained deep learning models (VGG19, VGG16, ResNet50, MobileNetV2, and EfficientNetB3) and compared their accuracy levels when detecting mpox. The performance of the models was assessed with metrics (i.e., the accuracy, recall, precision, and F1-score). Our experimental results demonstrate that the MobileNetV2 model had the best classification performance with an accuracy level of 98.16%, a recall of 0.96, a precision of 0.99, and an F1-score of 0.98. Additionally, validation of the model with different datasets showed that the highest accuracy of 0.94% was achieved using the MobileNetV2 model. Our findings indicate that the MobileNetV2 method outperforms previous models described in the literature in mpox image classification. These results are promising, as they show that machine learning techniques could be used for the early detection of mpox. Our algorithm was able to achieve a high level of accuracy in classifying mpox in both the training and test sets, making it a potentially valuable tool for quick and accurate diagnosis in clinical settings. |
---|