Cargando…

Designing a Resilient–Sustainable Supply Chain Network of Age-Differentiated Blood Platelets Using Vertical–Horizontal Transshipment and Grey Wolf Optimizer

Blood platelets are a typical instance of perishable age-differentiated products with a shelf life of five days (on average), which may lead to significant wastage of some collected samples. At the same time, a shortage of platelets may also be observed because of emergency demands and the limited n...

Descripción completa

Detalles Bibliográficos
Autores principales: Shokouhifar, Mohammad, Goli, Alireza
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10001996/
https://www.ncbi.nlm.nih.gov/pubmed/36901089
http://dx.doi.org/10.3390/ijerph20054078
Descripción
Sumario:Blood platelets are a typical instance of perishable age-differentiated products with a shelf life of five days (on average), which may lead to significant wastage of some collected samples. At the same time, a shortage of platelets may also be observed because of emergency demands and the limited number of donors, especially during disasters such as wars and the COVID-19 pandemic. Therefore, developing an efficient blood platelet supply chain management model is highly necessary to reduce shortage and wastage. In this research, an integrated resilient–sustainable supply chain network of perishable age-differentiated platelets considering vertical and horizontal transshipment is designed. In order to achieve sustainability, economic cost, social cost (shortage), and environmental cost (wastage) are taken into account. A reactive resilient strategy utilizing lateral transshipment between hospitals is adopted to make the blood platelet supply chain powerful against shortage and disruption risks. The presented model is solved using a metaheuristic based on a local search-empowered grey wolf optimizer. The obtained results demonstrate the efficiency of the proposed vertical–horizontal transshipment model in reducing total economic cost, shortage, and wastage by 3.61%, 30.1%, and 18.8%, respectively.