Cargando…
Application of Natural and Calcined Oyster Shell Powders to Improve Latosol and Manage Nitrogen Leaching
Excessive N fertilizer application has aggravated soil acidification and loss of N. Although oyster shell powder (OSP) can improve acidic soil, few studies have investigated its ability to retain soil N. Here, the physicochemical properties of latosol after adding OSP and calcined OSP (COSP) and the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002008/ https://www.ncbi.nlm.nih.gov/pubmed/36900930 http://dx.doi.org/10.3390/ijerph20053919 |
_version_ | 1784904284576415744 |
---|---|
author | Yang, Xiaofei Liu, Kexing Wen, Yanmei Huang, Yongxiang Zheng, Chao |
author_facet | Yang, Xiaofei Liu, Kexing Wen, Yanmei Huang, Yongxiang Zheng, Chao |
author_sort | Yang, Xiaofei |
collection | PubMed |
description | Excessive N fertilizer application has aggravated soil acidification and loss of N. Although oyster shell powder (OSP) can improve acidic soil, few studies have investigated its ability to retain soil N. Here, the physicochemical properties of latosol after adding OSP and calcined OSP (COSP) and the dynamic leaching patterns of ammonium N (NH(4)(+)-N), nitrate N (NO(3)(−)-N), and Ca in seepage, were examined through indoor culture and intermittent soil column simulation experiments. Various types of N fertilizer were optimized through the application of 200 mg/kg of N, urea (N 200 mg/kg) was the control treatment (CK), and OSP and COSPs prepared at four calcination temperatures—500, 600, 700, and 800 °C—were added to the latosol for cultivation and leaching experiments. Under various N application conditions, the total leached N from the soil followed ammonium nitrate > ammonium chloride > urea. The OSP and COSPs had a urea adsorption rate of 81.09–91.29%, and the maximum reduction in cumulative soil inorganic N leached was 18.17%. The ability of COSPs to inhibit and control N leaching improved with increasing calcination temperature. Applying OSP and COSPs increased soil pH, soil organic matter, total N, NO(3)(−)-N, exchangeable Ca content, and cation exchange capacity. Although all soil enzyme activities related to N transformation decreased, the soil NH(4)(+)-N content remained unchanged. The strong adsorption capacities for NH(4)(+)-N by OSP and COSPs reduced the inorganic N leaching, mitigating the risk of groundwater contamination. |
format | Online Article Text |
id | pubmed-10002008 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100020082023-03-11 Application of Natural and Calcined Oyster Shell Powders to Improve Latosol and Manage Nitrogen Leaching Yang, Xiaofei Liu, Kexing Wen, Yanmei Huang, Yongxiang Zheng, Chao Int J Environ Res Public Health Article Excessive N fertilizer application has aggravated soil acidification and loss of N. Although oyster shell powder (OSP) can improve acidic soil, few studies have investigated its ability to retain soil N. Here, the physicochemical properties of latosol after adding OSP and calcined OSP (COSP) and the dynamic leaching patterns of ammonium N (NH(4)(+)-N), nitrate N (NO(3)(−)-N), and Ca in seepage, were examined through indoor culture and intermittent soil column simulation experiments. Various types of N fertilizer were optimized through the application of 200 mg/kg of N, urea (N 200 mg/kg) was the control treatment (CK), and OSP and COSPs prepared at four calcination temperatures—500, 600, 700, and 800 °C—were added to the latosol for cultivation and leaching experiments. Under various N application conditions, the total leached N from the soil followed ammonium nitrate > ammonium chloride > urea. The OSP and COSPs had a urea adsorption rate of 81.09–91.29%, and the maximum reduction in cumulative soil inorganic N leached was 18.17%. The ability of COSPs to inhibit and control N leaching improved with increasing calcination temperature. Applying OSP and COSPs increased soil pH, soil organic matter, total N, NO(3)(−)-N, exchangeable Ca content, and cation exchange capacity. Although all soil enzyme activities related to N transformation decreased, the soil NH(4)(+)-N content remained unchanged. The strong adsorption capacities for NH(4)(+)-N by OSP and COSPs reduced the inorganic N leaching, mitigating the risk of groundwater contamination. MDPI 2023-02-22 /pmc/articles/PMC10002008/ /pubmed/36900930 http://dx.doi.org/10.3390/ijerph20053919 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yang, Xiaofei Liu, Kexing Wen, Yanmei Huang, Yongxiang Zheng, Chao Application of Natural and Calcined Oyster Shell Powders to Improve Latosol and Manage Nitrogen Leaching |
title | Application of Natural and Calcined Oyster Shell Powders to Improve Latosol and Manage Nitrogen Leaching |
title_full | Application of Natural and Calcined Oyster Shell Powders to Improve Latosol and Manage Nitrogen Leaching |
title_fullStr | Application of Natural and Calcined Oyster Shell Powders to Improve Latosol and Manage Nitrogen Leaching |
title_full_unstemmed | Application of Natural and Calcined Oyster Shell Powders to Improve Latosol and Manage Nitrogen Leaching |
title_short | Application of Natural and Calcined Oyster Shell Powders to Improve Latosol and Manage Nitrogen Leaching |
title_sort | application of natural and calcined oyster shell powders to improve latosol and manage nitrogen leaching |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002008/ https://www.ncbi.nlm.nih.gov/pubmed/36900930 http://dx.doi.org/10.3390/ijerph20053919 |
work_keys_str_mv | AT yangxiaofei applicationofnaturalandcalcinedoystershellpowderstoimprovelatosolandmanagenitrogenleaching AT liukexing applicationofnaturalandcalcinedoystershellpowderstoimprovelatosolandmanagenitrogenleaching AT wenyanmei applicationofnaturalandcalcinedoystershellpowderstoimprovelatosolandmanagenitrogenleaching AT huangyongxiang applicationofnaturalandcalcinedoystershellpowderstoimprovelatosolandmanagenitrogenleaching AT zhengchao applicationofnaturalandcalcinedoystershellpowderstoimprovelatosolandmanagenitrogenleaching |