Cargando…
A Deep Learning Approach for Dengue Fever Prediction in Malaysia Using LSTM with Spatial Attention
This research aims to predict dengue fever cases in Malaysia using machine learning techniques. A dataset consisting of weekly dengue cases at the state level in Malaysia from 2010 to 2016 was obtained from the Malaysia Open Data website and includes variables such as climate, geography, and demogra...
Autores principales: | Majeed, Mokhalad A., Shafri, Helmi Zulhaidi Mohd, Zulkafli, Zed, Wayayok, Aimrun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002017/ https://www.ncbi.nlm.nih.gov/pubmed/36901139 http://dx.doi.org/10.3390/ijerph20054130 |
Ejemplares similares
-
Land Use/Cover Change Detection and Urban Sprawl Analysis in Bandar Abbas City, Iran
por: Dadras, Mohsen, et al.
Publicado: (2014) -
Capability of Integrated MODIS Imagery and ALOS for Oil Palm, Rubber and Forest Areas Mapping in Tropical Forest Regions
por: Razali, Sheriza Mohd, et al.
Publicado: (2014) -
Spatial occurrence of dengue fever and its relationship with land use in Selangor, Malaysia
por: Toha, Haidar Rizal, et al.
Publicado: (2014) -
Enhancer-LSTMAtt: A Bi-LSTM and Attention-Based Deep Learning Method for Enhancer Recognition
por: Huang, Guohua, et al.
Publicado: (2022) -
Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM
por: Shahid, Farah, et al.
Publicado: (2020)