Cargando…

A Low-Cost Sensor System Installed in Buses to Monitor Air Quality in Cities

Air pollution is an important source of morbidity and mortality. It is essential to understand to what levels of air pollution citizens are exposed, especially in urban areas. Low-cost sensors are an easy-to-use option to obtain real-time air quality (AQ) data, provided that they go through specific...

Descripción completa

Detalles Bibliográficos
Autores principales: Correia, Carolina, Martins, Vânia, Matroca, Bernardo, Santana, Pedro, Mariano, Pedro, Almeida, Alexandre, Almeida, Susana Marta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002067/
https://www.ncbi.nlm.nih.gov/pubmed/36901085
http://dx.doi.org/10.3390/ijerph20054073
Descripción
Sumario:Air pollution is an important source of morbidity and mortality. It is essential to understand to what levels of air pollution citizens are exposed, especially in urban areas. Low-cost sensors are an easy-to-use option to obtain real-time air quality (AQ) data, provided that they go through specific quality control procedures. This paper evaluates the reliability of the ExpoLIS system. This system is composed of sensor nodes installed in buses, and a Health Optimal Routing Service App to inform the commuters about their exposure, dose, and the transport’s emissions. A sensor node, including a particulate matter (PM) sensor (Alphasense OPC-N3), was evaluated in laboratory conditions and at an AQ monitoring station. In laboratory conditions (approximately constant temperature and humidity conditions), the PM sensor obtained excellent correlations (R(2)≈1) against the reference equipment. At the monitoring station, the OPC-N3 showed considerable data dispersion. After several corrections based on the k-Köhler theory and Multiple Regression Analysis, the deviation was reduced and the correlation with the reference improved. Finally, the ExpoLIS system was installed, leading to the production of AQ maps with high spatial and temporal resolution, and to the demonstration of the Health Optimal Routing Service App as a valuable tool.