Cargando…

Empirical Mode Decomposition and Hilbert Spectrum for Abnormality Detection in Normal and Abnormal Walking Transitions

Sensor-based human activity recognition (HAR) is a method for observing a person’s activity in an environment. With this method, it is possible to monitor remotely. HAR can analyze a person’s gait, whether normal or abnormal. Some of its applications may use several sensors mounted on the body, but...

Descripción completa

Detalles Bibliográficos
Autores principales: Erfianto, Bayu, Rizal, Achmad, Hadiyoso, Sugondo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002180/
https://www.ncbi.nlm.nih.gov/pubmed/36900889
http://dx.doi.org/10.3390/ijerph20053879
Descripción
Sumario:Sensor-based human activity recognition (HAR) is a method for observing a person’s activity in an environment. With this method, it is possible to monitor remotely. HAR can analyze a person’s gait, whether normal or abnormal. Some of its applications may use several sensors mounted on the body, but this method tends to be complex and inconvenient. One alternative to wearable sensors is using video. One of the most commonly used HAR platforms is PoseNET. PoseNET is a sophisticated platform that can detect the skeleton and joints of the body, which are then known as joints. However, a method is still needed to process the raw data from PoseNET to detect subject activity. Therefore, this research proposes a way to detect abnormalities in gait using empirical mode decomposition and the Hilbert spectrum and transforming keys-joints, and skeletons from vision-based pose detection into the angular displacement of walking gait patterns (signals). Joint change information is extracted using the Hilbert Huang Transform to study how the subject behaves in the turning position. Furthermore, it is determined whether the transition goes from normal to abnormal subjects by calculating the energy in the time-frequency domain signal. The test results show that during the transition period, the energy of the gait signal tends to be higher than during the walking period.