Cargando…
PM2.5 Concentration Prediction Model: A CNN–RF Ensemble Framework
Although many machine learning methods have been widely used to predict PM2.5 concentrations, these single or hybrid methods still have some shortcomings. This study integrated the advantages of convolutional neural network (CNN) feature extraction and the regression ability of random forest (RF) to...
Autores principales: | Chen, Mei-Hsin, Chen, Yao-Chung, Chou, Tien-Yin, Ning, Fang-Shii |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002213/ https://www.ncbi.nlm.nih.gov/pubmed/36901088 http://dx.doi.org/10.3390/ijerph20054077 |
Ejemplares similares
-
An Ensemble Spatiotemporal Model for Predicting PM(2.5) Concentrations
por: Li, Lianfa, et al.
Publicado: (2017) -
Ensemble-based classification approach for PM2.5 concentration forecasting using meteorological data
por: Saminathan, S., et al.
Publicado: (2023) -
A Spatial–Temporal Causal Convolution Network Framework for Accurate and Fine-Grained PM(2.5) Concentration Prediction
por: Lin, Shaofu, et al.
Publicado: (2022) -
Corn Yield Prediction With Ensemble CNN-DNN
por: Shahhosseini, Mohsen, et al.
Publicado: (2021) -
Combination of VSLAM and a Magnetic Fingerprint Map to Improve Accuracy of Indoor Positioning
por: Ning, Fang-Shii, et al.
Publicado: (2022)