Cargando…
MSEDDI: Multi-Scale Embedding for Predicting Drug—Drug Interaction Events
A norm in modern medicine is to prescribe polypharmacy to treat disease. The core concern with the co-administration of drugs is that it may produce adverse drug—drug interaction (DDI), which can cause unexpected bodily injury. Therefore, it is essential to identify potential DDI. Most existing meth...
Autores principales: | Yu, Liyi, Xu, Zhaochun, Cheng, Meiling, Lin, Weizhong, Qiu, Wangren, Xiao, Xuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002564/ https://www.ncbi.nlm.nih.gov/pubmed/36901929 http://dx.doi.org/10.3390/ijms24054500 |
Ejemplares similares
-
HGDTI: predicting drug–target interaction by using information aggregation based on heterogeneous graph neural network
por: Yu, Liyi, et al.
Publicado: (2022) -
iADRGSE: A Graph-Embedding and Self-Attention Encoding for Identifying Adverse Drug Reaction in the Earlier Phase of Drug Development
por: Cheng, Xiang, et al.
Publicado: (2022) -
Predicting N6-Methyladenosine Sites in Multiple Tissues of Mammals through Ensemble Deep Learning
por: Luo, Zhengtao, et al.
Publicado: (2022) -
Identifying GPCR-drug interaction based on wordbook learning from sequences
por: Wang, Pu, et al.
Publicado: (2020) -
DLm6Am: A Deep-Learning-Based Tool for Identifying N6,2′-O-Dimethyladenosine Sites in RNA Sequences
por: Luo, Zhengtao, et al.
Publicado: (2022)