Cargando…

Stem Cells in Kidney Ischemia: From Inflammation and Fibrosis to Renal Tissue Regeneration

Ischemic nephropathy consists of progressive renal function loss due to renal hypoxia, inflammation, microvascular rarefaction, and fibrosis. We provide a literature review focused on kidney hypoperfusion-dependent inflammation and its influence on renal tissue’s ability to self-regenerate. Moreover...

Descripción completa

Detalles Bibliográficos
Autores principales: Cianci, Rosario, Simeoni, Mariadelina, Cianci, Eleonora, De Marco, Oriana, Pisani, Antonio, Ferri, Claudio, Gigante, Antonietta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002584/
https://www.ncbi.nlm.nih.gov/pubmed/36902062
http://dx.doi.org/10.3390/ijms24054631
Descripción
Sumario:Ischemic nephropathy consists of progressive renal function loss due to renal hypoxia, inflammation, microvascular rarefaction, and fibrosis. We provide a literature review focused on kidney hypoperfusion-dependent inflammation and its influence on renal tissue’s ability to self-regenerate. Moreover, an overview of the advances in regenerative therapy with mesenchymal stem cell (MSC) infusion is provided. Based on our search, we can point out the following conclusions: 1. endovascular reperfusion is the gold-standard therapy for RAS, but its success mostly depends on treatment timeliness and a preserved downstream vascular bed; 2. anti-RAAS drugs, SGLT2 inhibitors, and/or anti-endothelin agents are especially recommended for patients with renal ischemia who are not eligible for endovascular reperfusion for slowing renal damage progression; 3. TGF-β, MCP-1, VEGF, and NGAL assays, along with BOLD MRI, should be extended in clinical practice and applied to a pre- and post-revascularization protocols; 4. MSC infusion appears effective in renal regeneration and could represent a revolutionary treatment for patients with fibrotic evolution of renal ischemia.