Cargando…
FREEDA: an automated computational pipeline guides experimental testing of protein innovation by detecting positive selection
Cell biologists typically focus on conserved regions of a protein, overlooking innovations that can shape its function over evolutionary time. Computational analyses can reveal potential innovations by detecting statistical signatures of positive selection that leads to rapid accumulation of benefic...
Autores principales: | Dudka, Damian, Akins, R. Brian, Lampson, Michael A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002610/ https://www.ncbi.nlm.nih.gov/pubmed/36909479 http://dx.doi.org/10.1101/2023.02.27.530329 |
Ejemplares similares
-
PosiGene: automated and easy-to-use pipeline for genome-wide detection of positively selected genes
por: Sahm, Arne, et al.
Publicado: (2017) -
DGINN, an automated and highly-flexible pipeline for the detection of genetic innovations on protein-coding genes
por: Picard, Lea, et al.
Publicado: (2020) -
Computational pipeline for designing guide RNAs for mismatch-CRISPRi
por: van Gestel, Jordi, et al.
Publicado: (2021) -
AlexandrusPS: A User-Friendly Pipeline for the Automated Detection of Orthologous Gene Clusters and Subsequent Positive Selection Analysis
por: Ceron-Noriega, Alejandro, et al.
Publicado: (2023) -
An automated computational image analysis pipeline for histological grading of cardiac allograft rejection
por: Peyster, Eliot G, et al.
Publicado: (2021)