Cargando…
NOVEL APPROACH EXPLAINS SPATIO-SPECTRAL INTERACTIONS IN RAW ELECTROENCEPHALOGRAM DEEP LEARNING CLASSIFIERS
The application of deep learning classifiers to resting-state electroencephalography (rs-EEG) data has become increasingly common. However, relative to studies using traditional machine learning methods and extracted features, deep learning methods are less explainable. A growing number of studies h...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002614/ https://www.ncbi.nlm.nih.gov/pubmed/36909628 http://dx.doi.org/10.1101/2023.02.26.530118 |
Sumario: | The application of deep learning classifiers to resting-state electroencephalography (rs-EEG) data has become increasingly common. However, relative to studies using traditional machine learning methods and extracted features, deep learning methods are less explainable. A growing number of studies have presented explainability approaches for rs-EEG deep learning classifiers. However, to our knowledge, no approaches give insight into spatio-spectral interactions (i.e., how spectral activity in one channel may interact with activity in other channels). In this study, we combine gradient and perturbation-based explainability approaches to give insight into spatio-spectral interactions in rs-EEG deep learning classifiers for the first time. We present the approach within the context of major depressive disorder (MDD) diagnosis identifying differences in frontal δ activity and reduced interactions between frontal electrodes and other electrodes. Our approach provides novel insights and represents a significant step forward for the field of explainable EEG classification. |
---|