Cargando…
NOVEL APPROACH EXPLAINS SPATIO-SPECTRAL INTERACTIONS IN RAW ELECTROENCEPHALOGRAM DEEP LEARNING CLASSIFIERS
The application of deep learning classifiers to resting-state electroencephalography (rs-EEG) data has become increasingly common. However, relative to studies using traditional machine learning methods and extracted features, deep learning methods are less explainable. A growing number of studies h...
Autores principales: | Ellis, Charles A., Sattiraju, Abhinav, Miller, Robyn L., Calhoun, Vince D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002614/ https://www.ncbi.nlm.nih.gov/pubmed/36909628 http://dx.doi.org/10.1101/2023.02.26.530118 |
Ejemplares similares
-
An Explainable and Robust Deep Learning Approach for Automated Electroencephalography-based Schizophrenia Diagnosis
por: Sattiraju, Abhinav, et al.
Publicado: (2023) -
Improving Multichannel Raw Electroencephalography-based Diagnosis of Major Depressive Disorder by Pretraining Deep Learning Models with Single Channel Sleep Stage Data
por: Ellis, Charles A., et al.
Publicado: (2023) -
Improving Multichannel Raw Electroencephalography-based Diagnosis of Major Depressive Disorder via Transfer Learning with Single Channel Sleep Stage Data
por: Ellis, Charles A., et al.
Publicado: (2023) -
A Systematic Approach for Explaining Time and Frequency Features Extracted by Convolutional Neural Networks From Raw Electroencephalography Data
por: Ellis, Charles A., et al.
Publicado: (2022) -
Explainable Fuzzy Clustering Framework Reveals Divergent Default Mode Network Connectivity Dynamics in Schizophrenia
por: Ellis, Charles A., et al.
Publicado: (2023)