Cargando…
Modeling functional cell types in spike train data
A major goal of computational neuroscience is to build accurate models of the activity of neurons that can be used to interpret their function in circuits. Here, we explore using functional cell types to refine single-cell models by grouping them into functionally relevant classes. Formally, we defi...
Autores principales: | Zdeblick, Daniel N., Shea-Brown, Eric T., Witten, Daniela M., Buice, Michael A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002678/ https://www.ncbi.nlm.nih.gov/pubmed/36909648 http://dx.doi.org/10.1101/2023.02.28.530327 |
Ejemplares similares
-
Modeling functional cell types in spike train data
por: Zdeblick, Daniel N., et al.
Publicado: (2023) -
Linking structure and activity in nonlinear spiking networks
por: Ocker, Gabriel Koch, et al.
Publicado: (2017) -
Dimensionality in recurrent spiking networks: Global trends in activity and local origins in connectivity
por: Recanatesi, Stefano, et al.
Publicado: (2019) -
Dynamic Finite Size Effects in Spiking Neural Networks
por: Buice, Michael A., et al.
Publicado: (2013) -
Generalized activity equations for spiking neural network dynamics
por: Buice, Michael A., et al.
Publicado: (2013)