Cargando…
BrainLine: An Open Pipeline for Connectivity Analysis of Heterogeneous Whole-Brain Fluorescence Volumes
Whole-brain fluorescence images require several stages of computational processing to fully reveal the neuron morphology and connectivity information they contain. However, these computational tools are rarely part of an integrated pipeline. Here we present BrainLine, an open-source pipeline that in...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002688/ https://www.ncbi.nlm.nih.gov/pubmed/36909631 http://dx.doi.org/10.1101/2023.02.28.530429 |
Sumario: | Whole-brain fluorescence images require several stages of computational processing to fully reveal the neuron morphology and connectivity information they contain. However, these computational tools are rarely part of an integrated pipeline. Here we present BrainLine, an open-source pipeline that interfaces with existing software to provide registration, axon segmentation, soma detection, visualization and analysis of results. By implementing a feedback based training paradigm with BrainLine, we were able to use a single learning algorithm to accurately process a diverse set of whole-brain images generated by light-sheet microscopy. BrainLine is available as part of our Python package brainlit: http://brainlit.neurodata.io/. |
---|