Cargando…
Classification of COVID-19 Patients into Clinically Relevant Subsets by a Novel Machine Learning Pipeline Using Transcriptomic Features
The persistent impact of the COVID-19 pandemic and heterogeneity in disease manifestations point to a need for innovative approaches to identify drivers of immune pathology and predict whether infected patients will present with mild/moderate or severe disease. We have developed a novel iterative ma...
Autores principales: | Daamen, Andrea R., Bachali, Prathyusha, Grammer, Amrie C., Lipsky, Peter E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002748/ https://www.ncbi.nlm.nih.gov/pubmed/36902333 http://dx.doi.org/10.3390/ijms24054905 |
Ejemplares similares
-
An interpretable machine learning pipeline based on transcriptomics predicts phenotypes of lupus patients
por: Leventhal, Emily L., et al.
Publicado: (2023) -
Machine learning reveals distinct gene signature profiles in lesional and nonlesional regions of inflammatory skin diseases
por: Martínez, Brittany A., et al.
Publicado: (2022) -
Analysis of transcriptomic features reveals molecular endotypes of SLE with clinical implications
por: Hubbard, Erika L., et al.
Publicado: (2023) -
Comprehensive transcriptomic analysis of COVID-19 blood, lung, and airway
por: Daamen, Andrea R., et al.
Publicado: (2021) -
COVID-19 patients exhibit unique transcriptional signatures indicative of disease severity
por: Daamen, Andrea R., et al.
Publicado: (2022)