Cargando…
Predicting ‘Brainage’ in the Developmental Period using Structural MRI, Morphometric Similarity, and Machine Learning
Brain development is regularly studied using structural MRI. Recently, studies have used a combination of statistical learning and large-scale imaging databases of healthy-children to predict an individual’s age from structural MRI. This data-driven, ‘brainage’ typically differs from the subjects ch...
Autores principales: | Griffiths-King, Daniel J., Wood, Amanda G., Novak, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002817/ https://www.ncbi.nlm.nih.gov/pubmed/36909598 http://dx.doi.org/10.21203/rs.3.rs-2583936/v1 |
Ejemplares similares
-
Predicting ‘Brainage’ in late childhood to adolescence (6-17yrs) using structural MRI, morphometric similarity, and machine learning
por: Griffiths-King, Daniel, et al.
Publicado: (2023) -
Advanced BrainAGE in older adults with type 2 diabetes mellitus
por: Franke, Katja, et al.
Publicado: (2013) -
MRI BrainAGE demonstrates increased brain aging in systemic lupus erythematosus patients
por: Kuchcinski, Grégory, et al.
Publicado: (2023) -
BrainAGE in Mild Cognitive Impaired Patients: Predicting the Conversion to Alzheimer’s Disease
por: Gaser, Christian, et al.
Publicado: (2013) -
Clinically feasible brain morphometric similarity network construction approaches with restricted magnetic resonance imaging acquisitions
por: King, Daniel J., et al.
Publicado: (2020)